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Abstract

For the development of high energy and high duty cycle
RFQs accurate particle dynamic simulation tools are im-
portant for optimizing designs, especially in high current
applications. To describe the external fields in RFQs as
well as the internal space charge fields with image effect,
the Poisson equation has to be solved taking the bound-
ary conditions into account. In PteqHI a multigrid Poisson
solver is used to solve the Poisson equation. This method
will be described and compared to multipole expansion
method to verify the answer of the Poisson solver.

PTEQHI

PteqHI is a program to simulate particle dynamics in
RFQs. It has its roots in PARMTEQ and has continuously
been developed and adapted to meet several problems by
R. A. Jameson [1]. It describes the external field with the
same multipole expansion method as PARMTEQM and it
also uses the SCHEFF routine for its space charge cal-
culation, but it uses time as the independent variable and
corrects other approximations. Simulations of a set of 11
RFQs, which are similar to the IFMIF designs in terms of
final energy, frequency, emittance, beam current, but with
changing aperture have revealed some limitations of these
original methods. This was one of the reasons to change
the way the electric field is calculated along the RFQ to
Multigrid Poisson Solver.

MULTIGRID POISSON SOLVER

A classical reference on Poisson equation solution by
grid methods is Hockney [2]. The best modern method is to
use multiple grids - the multigrid method - as presented in
[3], which includes a good summary of how the multigrid
method absorbs and extends the earlier methods. Here only
the main ideas are presented. The first concept of the multi-
grid idea is that an iterative solver such as the Gauss-Seidel
solver smoothes the error of an approximation within a few
iterations and can therefore be used as a smoother. The
second concept is the so called coarse grid principle [3]:
If an error is well smoothed it can be approximated on a
(much) coarser grid without loosing information. The low
frequency components of the fine grid are transferred to
high frequency components on the coarse grid. The error
can be further reduced on the coarser grid with less compu-
tational effort, since the number of grid points is reduced.
The error vmh of an approximation um

h of the solution u is
defined by

vmh := u− um
h (1)

and can generally be expressed by an Fourier expansion

vmh (�x) =

n−1∑

i,j,k=1

αi,j,k sin(iπx) sin(jπy) sin(kπz) (2)

The error can not be calculated directly, since the solution u
of the Poisson equation is not known at any time. Therefore
it is useful to define the defect or residual of the approxi-
mation um

h by

dmh := fh − Lhu
m
h . (3)

The defect is a measure of how much the Laplacian of a
given approximation differs from the source term of the
Poisson equation. It can therefore be used to determine the
quality of the solver and its ability to converge. The defect
equation

Lhv
m
h = dmh (4)

is equivalent to the definition of the error

u = um
h + vmh . (5)

Ingredients of Multigrid Cycles

Generally, a multigrid iteration starts on the finest grid
Ωh by applying some smoothing cycles to the approxima-
tion um

h to reduce the high frequency error. Then the defect
dmh is calculated by equation (3) and restricted to the coarser
grid by a restriction schema (dm2h). The equation

L2hṽ
m
2h = dm2h (6)

has to be solved on Ω2h, where L2h is the corresponding
Laplacian on Ω2h. This can be either done recursively with
another multigrid approach since equation (6) has the same
form than the initial Poisson equation, or by a fast iterative
solver. The defect equation (6) does not need to solved
exactly. A suitable approximation ṽm2h will work as well
without essential loss of convergence speed [3]. After ṽ2h
is computed it will be interpolated to the fine grid ṽh (Ωh)
and the new approximation is found by

um+1
h = um

h + ṽmh . (7)

Finally, some postsmoothing steps will be performed to
um+1
h . An example of a multigrid iteration cycle is the W-

cycle shown on Figure 1.

COMPARISON TO MULTIPOLE
EXPANSION METHOD

The potential at the end of a cell with a modulation
of m = 2.3 for the two different methods is shown in
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Figure 1: W-cycle.

Figure 2: Potential at the end of an accelerating cell: Upper
- from multipole expansion method; lower - from Poisson
solver method.

Figure 2. Potentials that are greater than the vane volt-
age have been cut off. Obviously, the shape of the elec-
trodes (white area) of the MP-potential is not even close to
the shape of the electrodes. Close to the beam axis the
two method give simular potentials, but with increasing

displacement from the beam axis, differences increase as
well. In between the electrodes, the potential has to change
from plus to minus the vane voltage. For the MP-potential
the distance between the electrodes has become very small
compared to the actual shape of the electrodes used in the
MG-potential (potential from the multigrid Poisson solver),
therefore the electric field calculated from the MP-potential
will be higher than it actually is. Also the position of the
horizontal vane in the MP-potential is too far away from
the axes and therefore the corresponding electric field is
too low. The absolute value of the electric field at the same

Figure 3: Absolute value of electric field at the end of an ac-
celerating cell: upper - multipole expansion method; lower
- Poisson solver method.

position is shown in Figure 3. The maximum electric field
is in the region close to the electrodes and s seen to be quite
different from the multipole expansion method. At bigger
distances away from the beam axis (lower left corner) the
MP-field increases to its maximum whereas the MG-field
tends to decrease which is reasonable since the vane volt-
age remains constant and the distance between the elec-
trodes increase.
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Figure 4: Transmission for the set of 11 RFQs for two dif-
ferent routines for the external field. Xmsn denotes trans-
mission - particles are lost only radially. Acc denotes ac-
celerated particles.

The influence of the different descriptions of the external
field on the transmission on the set of RFQs are shown on
Figure 4 for the same space charge routine. The aperture-
factor is proportional to the reciprocal value of the aperture
at the end of the shaper section. The transmission curves
for the multipole expansion method and for the multigrid
Poisson solver are very close for the RFQs with a medium
and big aperture. Once the aperture has become small
enough, the results from the two different method start to
deviate from one another with the multigrid Poisson solver
giving higher transmission. For the first three large aperture
(a-factor 25, 30 and 35) RFQs the fraction of accelerated is
higher for the MG cases than for the multipole expansion
method. This behavior of the transmission curve fits quite
well with the considerations so far. For big apertures, radial
losses are not as large an effect, and the multipole expan-
sion method agrees more closely with the Poisson solver.
For smaller apertures the effects at the aperture and there-
fore at the edge of the area of validity of the multipole ex-
pansion method become important and the multigrid Pois-
son solver is a more accurate description of the external
field.

SPACE CHARGE

The multigrid Poisson solver can be used to calculate
the effects of space charge as well. The boundary for
the mesh is a grounded cylinder with the radius of twice
the maximum aperture. Figure 5 shows the transmission
curves for the set of RFQs for the space charge routines
SCHEFF, PICNIC and the Poisson Solver. The shape of the
curves agree quite well, but the absolute values vary a little.
SCHEFF gives lower values (3%). PICNIC with two dif-
ferent settings and the multigrid Poisson solver agree very
well over the whole curve (better than 1%), but the runtime
of the Poisson solver is much shorter.

Figure 5: Transmission for the set of 11 RFQs for different
space charge routines.

CONCLUSION

The implemented multigrid Poisson solver shows good
agreements to the well known multipole expansion method
in the region where the multipole expansion is a good rep-
resentation of the field. For small apertures particles tend
to see wrong fields in the multipole expansion method. For
space charge calculations the different routines compare
within 3%, with higher transmission for the more accurate
models. Further steps will be to use the multigrid Poisson
solver to calculate the effect of image charges as well.
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