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Abstract

Analytical formula to evaluate the vortex-penetration

field at a groove with a depth smaller than penetration depth

is derived, which can be applied to surfaces of cavities or

test pieces made from extreme type II superconductors such

as nitrogen-doped Nb or alternative materials like Nb3Sn or

NbN.

INTRODUCTION

The vortex-penetration field Bv is the field at which a vor-

tex overcome the Bean-Livingston barrier [1] and start to

penetrate into the superconductor (SC). Bv of extreme type

II SC, where the penetration depth λ is much larger than

the coherence length ξ, can be evaluated in the framework

of the London theory. Materials that attract much attentions

in the field of SC accelerating cavity such as dirty Nb like

nitrogen-doped Nb and alternative materials like Nb3Sn or

NbN are all categorized into this class. For an SC with an

ideal flat surface, Bv is given by Bv = ϕ0/(4πλξ) ≃ 0.7Bc ,

where ϕ0 is the flux quantum and Bc is the thermodynamic

critical magnetic field. Actually, experiments shows fields

can not reach such a level. More realistic assumption, such

as surface irregularities, should be incorporated.

In this paper we consider a groove with a depth δ smaller

than λ as a simple example of a surface irregularity, which

assume irregularities on cavity surfaces or test pieces made

from extreme type II SC such as a nitrogen-doped Nb or

alternative materials. Bv at this type of irregularity has not

been obtained so far, in spite of the fact that there are many

studies on Bv at a surface irregularity [2, 3, 4, 5].

MODEL

Let us consider a groove shown in Fig. 1(a). Gray and

white regions represent the SC and the vacuum, respec-

tively. Surface, groove and applied magnetic-field are per-

pendicular to the x-y plane. The half width of the groove

and the slope angle are given by R and π(α − 1)/2, respec-

tively, and thus the depth is given by δ = R tan[π(α−1)/2],

where 1 < α < 2. The depth is assumed to satisfy

ξ ≪ δ ≪ λ.

FORCES ACTING ON A VORTEX AND

THE VORTEX-PENETRATION FIELD

Suppose a vortex is at the position (x, y) = (0, δ + ξ),

inside the bottom of groove. This vortex feels two distinct
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Figure 1: (a) Groove with a depth that is smaller than the

penetration depth of the material and (b) its map on the w-

plane.

forces: (i) FM a force from a Meissner current due to an ex-

ternal field and (ii) FI a force due to an image antivortex that

is introduced to satisfy the boundary condition of zero cur-

rent normal to the surface. The former and the latter draw

the vortex to the inside and the outside of the SC, respec-

tively. The vortex-penetration field is a field at which these

competing forces are balanced.1

Force Due to an External Field
An external magnetic-field pushes a vortex into the su-

perconductor by a force FM = JM × ϕ0ẑ, where JM is

a Meissner screening-current, ϕ0 = 2.07 × 10−15 Wb is

the flux quantum and ẑ is the unit vector parallel to the

z-axis. To evaluate FM, we evaluate JM as follows. JM

satisfies div JM = 0 and one of the Maxwell equations,

JM = rot H, where the magnetic field H plays the role of

the vector potential of JM. For our two-dimensional prob-

lem, H can be written as H = (0,0, −ψ(x, y)), and JM is

given by JM = rot H = (−∂ψ/∂y, ∂ψ/∂x,0). On the other

hand, since λ is assumed to be much larger than the typ-

ical scale of the model, the London equation is reduced

to rot JM = −△H = 0, which allows us to introduce a

scalar potential of JM. For our two-dimensional problem

the scalar potential can be written as ϕ(x, y), and JM is

given by JM = −grad ϕ = (−∂ϕ/∂x,−∂ϕ/∂y,0). Since

1 Detailed reviews are given in Ref. [6, 7].
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both the two approaches should lead the same JM, we find

JMx = −
∂ϕ

∂x
= − ∂ψ

∂y
, JMy = −

∂ϕ

∂y
=

∂ψ

∂x
, (1)

which are the Cauchy-Riemann conditions. Thus a function

defined by

ΦM(z) ≡ ϕ(x, y) + iψ(x, y) , (2)

is an holomorphic function of a complex variable z = x+iy,

which is called the complex potential. If ΦM(z) is given,

components of JM are derived from

JMx− i JMy =−
∂ϕ

∂x
+ i
∂ϕ

∂y
=−

∂ϕ

∂x
− i

∂ψ

∂x
=−

dΦM(z)

dz
, (3)

where the property of the holomorphic function, Φ′

M
(z) =

∂ϕ/∂x + i∂ψ/∂x, is used. Thus our two-dimensional prob-

lem is reduced to a problem of finding ΦM(z).

The complex potential ΦM(z) is derived from a complex

potential Φ̃M(w) on a complex w-plane shown in Fig. 1(b)

through a conformal mapping z = F (w), by which orthog-

onal sets of field lines in the w-plane are transformed into

those in the z-plane. The map is given by the Schwarz-

Christoffel transformation,

z = F (w) = K1

∫
w

0

f (w)dw + K2 . (4)

The function f (w) is given by

f (w) = w
α−1(w2 − 1)−

α−1
2 , (5)

and the constants K1 and K2 are given by

K1 =

√
πR

Γ(α
2

)Γ( 3−α
2

) cos
π(α−1)

2

, (6)

K2 = iδ = iR tan
π(α − 1)

2
, (7)

which are determined by conditions that A′ and C′ on the

w-plane are mapped into A and C on the z-plane, respec-

tively. The complex potential on the w-plane is given by

Φ̃M(w) = J̃0w ( J̃0 ≡ K1 J0), which reproduces the current

distribution on the w-plane: −Φ̃′

M
(w) = − J̃0. Thus the

complex potential on the z-plane is given by

ΦM(z) = Φ̃M(F−1(z)) = F−1(z) J̃0 , (8)

where F−1 is an inverse function of F.

All that is left is to substitute Eq. (8) into Eq. (3). The we

obtain

JMx − i JMy = −
J0

f (w)
, (9)

where dF−1/dz = dw/dz = (dz/dw)−1
= (dF/dw)−1 is

used. In order to evaluate JM at the vortex position z =

zv ≡ i(δ + ξ), w corresponding to zv is necessary. While

no closed form of w = F−1(z) exist, that of an approximate

expression can be derived. Suppose w = iϵ (0 < ϵ ≪ 1)

is mapped into z = zv on the z-plane by Eq. (4). Then we

obtain i(δ + ξ) ≃ iδ + iK1ϵ
α/α, and find a relation

ϵ =

(
αξ

K1

) 1
α

, (10)

which immediately leads

f (iϵ ) ≃ ϵα−1
=

(
αξ

K1

) α−1
α

. (11)

Substituing Eq. (11) into Eq. (9), we find

JMx (zv ) = −
(

K1

αξ

) α−1
α

J0 , JMy (zv ) = 0 . (12)

Then the force due to the external field can be evaluated as

FM = JM × ϕ0ẑ

=

( √
π

Γ(α
2

)Γ( 3−α
2

)α cos
π(α−1)

2

R

ξ

) α−1
α

ϕ0 J0 ŷ , (13)

where ŷ is the unit vector parallel to the y-axis.

Force Due to the Image Antivortex
A current associated with a vortex near the surface sat-

isfies the boundary condition of zero current normal to the

surface. This boundary condition can be satisified by re-

moving the surface and introducing appropriate image an-

tivortex (antivotices). Then the current can be expressed as

JV+I = JV + JI, where JV and JI represent currents due to

the vortex and image antivortex (antivortices), respectively.

The force due to the image antivortex (antivortices) FI is

given by FI = JI × ϕ0 ẑ. Thus our next task is to evaluate JI

at the vortex position z = zv ≡ i(δ + ξ).

A scalar and a vector potentials of JV+I, and the complex

potential ΦV+I can be introduced in much the same way as

the above. Then components of JV+I are given by

JV+Ix − i JV+Iy = −
dΦV+I(z)

dz
, (14)

where ΦV+I(z) can be derived from the complex potential

Φ̃V+I(w) on the w-plane. Since the vortex and the image

antivortex on the w-plane are located at w = +iϵ and −iϵ ,

respectively, Φ̃V+I(w) is given by

Φ̃V+I(w) =
iϕ0

2πµ0λ2

[
log(w − iϵ ) − log(w + iϵ )

]
, (15)

and thus the complex potential on the z-plane is given by

ΦV+I(z) = Φ̃V+I(F−1(z)) . (16)

F is the Schwarz-Christoffel transformation given by

Eq. (4). Substituting Eq. (16) into Eq. (14), we find

JV+Ix−i JV+Iy =
1

K1 f (w)

−iϕ0

2πµ0λ2

(
1

w − iϵ
− 1

w + iϵ

)
. (17)
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At the vortex position z = zv or w = iϵ , the first term of

the square bracket diverges, which is contribution from the

current due to the vortex and should be abandoned for the

computation of JI. Then JI at the vortex position is give by

JIx−i JIy =
1

K1 f (iϵ )

iϕ0

2πµ0λ2

(
1

2iϵ

)
=

ϕ0

4πµ0λ2ξα
, (18)

or,

JIx (zv ) =
ϕ0

4πµ0λ2ξα
, JIy (zv ) = 0 , (19)

where a relation ϵ f (iϵ ) = ϵα = αξ/K1 is used. Then the

force due to the image anti-vortex is given by

FI = JM × ϕ0ẑ = −
ϕ2

0

4πµ0λ2ξα
ŷ . (20)

Note that Eq. (20) is reduced to the force from the flat sur-

face when α = 1, and is maximized when the groove is a

crack with α ≃ 2. Eq. (20) is identical with that given in

Ref. [3].

Vortex-penetration field

The vortex-penetration field Bv can be evaluated by bal-

ancing the two competing forces given by Eq. (13) and (20):

( √
π

Γ(α
2

)Γ( 3−α
2

)α cos
π (α−1)

2

R

ξ

) α−1
α

ϕ0 J0 =
ϕ2

0

4πµ0λ2ξα
. (21)

The surface current J0 is given by J0 = −µ−1
0

dB/dx |x=0 =

B0/µ0Λ, where B0 is the surface magnetic-field and Λ is a

quantity with the dimension of length. For examples,

Λ =





λ (semi−infinite SC) ,

λ
cosh

dS
λ

+( λ
′

λ
+

dI
λ

) sinh
dS
λ

sinh
dS
λ

+( λ′

λ
+

dI
λ

) cosh
dS
λ

(multilayer SC).
(22)

where dS , dI , and λ′ are an SC layer thickness, insulator

layer thickness and penetration depth of SC substrate mate-

rial, respectively.2 The finally we obtain

Bv =

ϕ0

4πλξ

Λ

λ

1

α

(
Γ(α

2
)Γ( 3−α

2
)α cos

π (α−1)

2√
π

ξ

R

) α−1
α

, (23)

Note that Eq. (23) is reduced to Bv of semi-infinite SC or

multilayer SC with ideal flat-surface when α = 1.

SUMMARY

Analytical formula to evaluate the vortex-penetration

field at a groove with a depth smaller than penetration depth

was derived. The formula would be useful to analyze rela-

tion between surfaces and performance-test results of cav-

ities or test pieces made from extreme type II SC such as

a dirty Nb like nitrogen-doped Nb or alternative materials

like Nb3Sn or NbN.

2 See Ref. [8, 9]. Detailed reviews are given in Ref. [6, 7, 10].
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