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INTRODUCTION
When a bunch passes through the LCLS-II undulator, the

wakefields induced in the vacuum chamber will add energy
variation along the bunch, which can negatively impact the
FEL performance. The wakefield of the vacuum chamber is
primarily due to the resistance of the walls and the roughness
of the surface. To minimize the impact of the wakes, one
would like a wall surface smooth enough so that the rough-
ness component of the wake is a small fraction of the total
wake. In LCLS-I, with an undulator chamber of the same
material (aluminum) and of roughly the same aperture, the
roughness tolerance specified as an rms slope of the surface,
(y′)rms = 10–15 mr, was difficult to achieve [1]. The goal
of the present study is to understand the consequences to
LCLS-II of loosening the roughness specification by a factor
of two to 30 mr.
The vacuum chamber within the undulator of LCLS-II

will be primarily extruded aluminum with a racetrack cross-
section: the aperture can be described as a rectangle of
12 mm by 5 mm (x by y), with added semicircular sides. (In
addition, there are short breaks at the quads with a different
shape and a larger aperture.) The impedance is essentially
the same as for two parallel plates separated vertically by a
distance of 5 mm. In this note we calculate the total wake
effect of the resistive wall plus a model of roughness. The
roughness model we use consists of small, shallow, sinu-
soidal corrugations [2]. We choose this model because mea-
surements of samples of polished aluminum, similar to that
to be used for the undulator chamber, find that the typical
roughness is shallow [3]. Note that this model does not gen-
erate a so-called “synchronous mode" wake, which applies
in the case of small steep, periodic corrugations [4, 5].

The calculation of the short-range wake of a resistive pipe
has been done before [6], as has the case of a pipe with
small, shallow corrugations [7]; in this report we properly
combine the two effects. We first consider a round model
of the chamber aperture, and then move to the flat geometry.
Selected beam and machine properties in the undulator re-
gion of LCLS-II, that are used in our calculations, are given
in Table I. The bunch charge, Q = 300 pC, is the largest
charge envisioned. For the nominal case, Q = 100 pC, the
current will also be uniform with I = 1 kA. More details
can be found in Ref. [8].

ROUND VACUUM CHAMBER
Consider a round chamber of radius a, with wall resis-

tance and small (in amplitude), shallow sinusoidal corru-
gations that represent the wall roughness. While in some
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Table 1: Selected beam and machine properties in the undu-
lator region of LCLS-II that are used in our calculations.

Parameter name Value Unit
Charge per bunch, Q 300 pC
Beam current, I 1 kA
Rms bunch length, σz 25 µm
Beam energy, E 4 GeV
Maximum beam power, Pb 120 kW
Vacuum chamber half aperture, a 2.5 mm
Vacuum chamber length, L 130 m

cases the beam impedance can be calculated as a sum of
the impedances due to resistance and that due to wall rough-
ness, in general such summation of impedances is not cor-
rect. A more general approach is based on the concept of
surface impedance [9] defined as the ratio of the longitu-
dinal electric field and the azimuthal magnetic field at the
wall, ζ = −(Ez/Z0Hφ ) |r=a , where Z0 = 377 Ω. Denoting
ζrw (k) as the wall resistive surface impedance and ζro (k)
as the surface impedance due to roughness we can write the
beam impedance Z (k) as

Z (k) =
Z0
2πa

(
1

ζrw (k) + ζro (k)
−

ika
2

)−1
, (1)

with wave number k = ω/c, where ω is frequency and c is
speed of light. The resistive wall surface (ac) impedance
ζrw (k), is given by [10]

ζrw (k) = (1 − i)

√
k (1 − ikcτc )

2Z0σc
, (2)

with σc the dc conductivity and τc the relaxation time of
the metallic walls. The roughness surface impedance [7]

ζro (k) =
1
4

kh2κ3/2 *
,

√
2k + κ − i

√
2k − κ

√
4k2 − κ2

+
-
; (3)

here the wall profile radius r is assumed to vary sinusoidally
with longitudinal position z: r = h cos κz. For the model to
be valid we require the oscillations to be small and shallow,
i.e. κa � 1 and hκ � 1. Note that Eq. 1 implies that
at low frequencies the two contributions to the impedance
simply add: Z (k) ≈ (Z0/2πa)[ζrw (k) + ζro (k)]; however,
in general this is not true. Once the impedance is known,
then the wake is obtained by the inverse Fourier transform:

Wδ (s) =
c
2π

∫ ∞

−∞

Z (k)e−ik sdk , (4)

with s the distance the test particle is behind the driving
particle, and a positive value of Wδ indicates energy loss.
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Note that in Ref. [7] further practical considerations for such
a calculation as a contour integral are discussed.

For the LCLS-II undulator vacuum chamber the dominant
effect is expected to be the resistive wall wake, with the
roughness corrugations contributing to a lesser degree. The
strength of the resistive wall wake for a short bunch depends
on the characteristic distance, s0 = (2a2/Z0σc )1/3, which
represents a location near the first zero crossing of the point
charge wake. For Al, σc = 3.5× 107 Ω−1m−1 and τc = 8 fs;
with a = 2.5 mm, s0 = 9.8 µm. For very short bunches it is
s0 rather than σ−1/2c that gives the scale of the strength of
the wake in a bunch.
For the roughness model, the wake [2]

Wδ (s) = −
Z0c

16π3/2a
h2κ3/2

s3/2
= −

c
4π3/2

√
Z0

(σc )ro

1
s3/2

,

(5)
with the overall minus sign in the expression indicating that
the test particle gains energy from the leading particle. This
is the same s dependence as for the long-range resistive wall
wake, and in the second expression on the right we write
the wake in terms of an equivalent roughness conductivity,
(σc )ro = 16/(Z0h4κ3). Then, in the same way as for the
resistive wall wake, we obtain a characteristic roughness dis-
tance (s0)ro . Choosing λro = 2π/κ = 300 µm, (y′)rms =

hκ/
√
2 = 30 mr, we find that (σc )ro = 2.9 × 108 Ω−1m−1

and (s0)ro = 4.9 µm. We see that the characteristic distance
for this level of roughness is about half that of the resistance.

We numerically performed the integral of Eq. 4, consider-
ing the effects of resistivity and roughness, with (y′)rms =

30 mr and λro = 300 µm. In Fig. 1 we present the point
charge wake Wδ (s) for the case of a pipe with wall re-
sistance (blue), roughness (red), and both resistance and
roughness (yellow). We see that the total wake is domi-
nated by the resistive component, but is not simply given
by the sum of the two individual wakes. We further note
that Wδ (0+) = Z0c/(πa2) = 5.8 MV/(nC m). The first zero-
crossing of the wakes is near s0 = 9.8 µm, (s0)ro = 4.9 µm,
and (s0)tot = 12 µm, respectively, where the combined
effect is approximated by (s0)tot = [σ−1/2c + (σc )−1/2ro ]−2.
The bunch wake is given by the convolution

Wλ (s) = −
∫ ∞

0
Wδ (s′)λ(s − s′) ds′ , (6)

with λ(s) the longitudinal bunch distribution, and a negative
value of Wλ indicates energy loss. In the undulator region of
LCLS-II the bunch shape is roughly uniform. For a uniform
distribution, with peak current I and length l = 2

√
3σz , the

relative induced energy variation at the undulator end is

δw (s) = −
eIL
cE

∫ s

0
Wδ (s′) ds′ [0 ≤ s ≤ `] , (7)

with L the undulator pipe length and E the beam energy.

Numerical Tests
We performed test calculations for the round geometry

with the finite difference, wakefield code ECHO [11]. This

Figure 1: For round geometry, with radius a = 2.5 mm:
point charge wake Wδ (s) for a pipe with resistance (blue),
roughness (red), and both resistance and roughness (yellow).
The roughness model assumes (y′)rms = 30 mr.

code can calculate the effects of both geometric and resistive
wall (dc only) wakes (provided that the skin depth is small
compared to the size of the wall perturbations). However,
a sinusoidal wall oscillation as small as e.g. (y′)rms =

30 mr on an a = 2.5 mm pipe is difficult to simulate, so
we artificially enlarged the oscillations and reduced the wall
conductivity. We consider two cases: (1) roughness alone
and (2) roughness plus wall resistance. Parameters are: a =
2.5 mm, λro = 2.5 mm, h = 60 µm, pipe length L = 25 cm,
wall conductivity σc = 6×105 Ω−1m−1; so s0 = 37 µm and
(y′)rms = 110 mr. The bunch is Gaussian with rms length
σz = 60 µm and the skin depth δs = 0.8 µm. The mesh
size was taken to be 12 µm. For analytical comparison to
the ECHO results, we inserted Eq. 1 into Eq. 4 to find the
point charge wake. This function was convolved according
to Eq. 6 to obtain the bunch wake. The results are shown in
Fig. 2. The ECHO results are given by the solid curves, and
the analytic results by dashes. We see good agreement.

Figure 2: Bunch wake as obtained by ECHO (solid curves)
and analytically (dashes) for test examples: (1) a lossless,
corrugated pipe (blue), and (2) a lossy, corrugated pipe (red).
The bunch shape λ is also shown, with the head to the left.
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FLAT VACUUM CHAMBER
Henke and Napoly give the impedance of a resistive wall

in flat geometry in Ref. [12]. With a slight modification we
include the effects of both the wall resistance and roughness:

Z (k) =
Z0
2πa

∫ ∞

0
dq sech q ×

×

(
cosh q

ζrw (k) + ζro (k)
−

ika
q

sinh q
)−1

. (8)

We have repeated the previous calculations for flat geometry,
for cases of aluminum with ac conductivity and roughness
with (y′)rms of: (1) 0 mr, (2) 15 mr, (3) 30 mr, and (4) 45 mr
(λro = 300 µm in all cases). The resulting point charge
wakes are shown in Fig. 3 (top). We see that, compared to
the round case, W (0+) is reduced by the factor π2/16 and
the first zero crossing of the wake is increased slightly.

Figure 3: Flat geometry: Wδ (s) (top) and relative induced
voltage for uniform bunch, δw (s) (bottom), considering re-
sistance plus roughness, for (y′)rms = 0, 15, 30, 45 mr.

In Fig. 3 (bottom) we plot the relative induced energy
variation for a uniform bunch distribution as obtained by
Eq. 7. Here the peak current I = 1 kA; the bunch head is
at s = 0 and the bunch tail at s = 30 (90) µm for the case
Q = 100 (300) pC (the two cases are indicated by shading in
the figure). The length of pipe is assumed to be L = 130 m,
and the beam energy E = 4 GeV.

The wake effect can be quantified by the total induced
relative energy variation, ∆δw ≡ max(δw ) −min(δw ). For
a resistive pipe with no roughness (for both 100 pC and
300 pC cases), ∆δw = 0.25%. Adding roughness increases
this value by 5%, 19%, 38%, when (y′)rms = 15, 30, 45 mr,
respectively. Since Wδ (s) drops nearly linearly to zero near
the effective s0, we can make the simple approximation

∆δw =
π2

16
Z0 s̄0
2πa2

eIL
E

, (9)

where s̄0 = s0 ((s0)tot ) in the case of resistance only
(resistance plus roughness). This approximation yields
∆δw = 0.23% for no roughness, and an increase in this
value by 22% when roughness with (y′)rms = 30 mr is
included, showing good agreement with the more accurate
results.

The roughness effect depends on (y′)rms and also on
λro , though the latter dependence is expected to be much
weaker. Repeating the (more accurate) calculation for wall
resistance plus roughness with (y′)rms = 30 mr, but taking
λro = 900 µm we find that the roughness increases ∆δw
by 27.5% compared to the effect of wall resistance alone.
This confirms that the dependence of ∆δw on λro is weak.
We have also repeated ∆δw calculations for numerically
obtained bunch shapes, for Q = 100 pC, 300 pC, [13] and
obtained results very similar to those presented here.

Finally, for completeness, we calculate the wakefield-
induced power loss in the undulator beam pipe: P =

−〈Wλ〉Q2 frep/L, where 〈〉 indicates averaging over the
bunch. We find that P = 2.1 (1.0) W/m for Q = 100
(300) pC, using the maximum planned repetition rate in
the undulators, frep = 300 (100) kHz; in these cases 0.5
(0.25) W/m is the extra contribution due to the roughness.

In conclusion, we have shown that loosening the rough-
ness tolerance by a factor of two, from an rms slope at the
surface of (y′)rms = 15 mr to 30 mr, will increase the rough-
ness contribution to the total induced voltage, ∆δw , from
5% to 20%, which is still small and should be acceptable.

ACKNOWLEDGEMENTS

The authors thank H.-D. Nuhn for helpful discussions,
and L. Wang for providing the actual LCLS-II bunch shapes.

TUPP122 Proceedings of LINAC2014, Geneva, Switzerland

ISBN 978-3-95450-142-7

710C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

04 Beam Dynamics, Extreme Beams, Sources and Beam Related Technologies

4A Beam Dynamics, Beam Simulations, Beam Transport



REFERENCES
[1] H.-D. Nuhn, LCLS Physics Requirements Document 1.4-001-

r4, SLAC, 2008.
[2] G. Stupakov, Proc. 19th Advanced ICFA Beam Dynamics

Workshop (Arcidosso, 2000), p. 141.
[3] G. Stupakov et al, Phys. Rev. ST-AB 2 (1999) 060701.
[4] A. Novokhatski and A. Mosnier, Proc. of PAC97, p. 1661.
[5] K. Bane and A. Novokhatski, SLAC-AP-117 and LCLS-TN-

99-1, March 1999.
[6] K. Bane and M. Sands, AIP Conf. Proc. 367 (1996) 131.
[7] G. Stupakov and S. Reiche, Proc. FEL2013, p. 127.
[8] K. Bane and G. Stupakov, LCLS-II TN-14-06, May 2014.
[9] G. V. Stupakov, AIP Conf. Proc. 496 (1999) 341.
[10] A. Chao, The physics of collective beam instabilities in high

energy accelerators (John Wiley & Sons, New York, 1993).
[11] I. Zagorodnov and T. Weiland, PRST-AB, 8 (2005) 042001.
[12] H. Henke and O. Napoli, Proc. EPAC90, p. 1046.
[13] L. Wang, private communication.

Proceedings of LINAC2014, Geneva, Switzerland TUPP122

04 Beam Dynamics, Extreme Beams, Sources and Beam Related Technologies

4A Beam Dynamics, Beam Simulations, Beam Transport

ISBN 978-3-95450-142-7

711 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


