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Abstract

Constant RF frequency acceleration in non-isochronous
rings by means of harmonic number jump is discussed in
this paper. General considerations about harmonic num-
ber jump with many cavities distributed around a ring are
thus set out. Application to fast acceleration of ultra-
relativistic particles in scaling Fixed Field Alternating Gra-
dient (FFAG) synchrotrons is then discussed. In this partic-
ular case, fundamental limitation on the maximum number
of turns is presented, and a way to bypass this limitation
using advanced scaling FFAG lattices is introduced.

INTRODUCTION

With their singular properties, FFAG rings are excellent
candidates for the fast acceleration of unstable particles and
large emittance beams, such as muon beams [1]. Because
of their fixed guide field, the acceleration speed is only lim-
ited by the available accelerating gradient. Constant RF
frequency operation is preferable to reach high accelerat-
ing gradient by means of high-Q cavities. Thus, several
solutions have already been proposed to use constant RF
frequency in either scaling [2] or non-scaling [3, 4] FFAG
rings. This paper aims to go further in the study of the so-
called harmonic number jump for ultra-relativistic particles
acceleration in scaling FFAG rings. General considerations
about harmonic number jump acceleration are presented in
the first part. A fundamental limitation on the achievable
turn number is there highlighted. In the next part, lon-
gitudinal and transverse motions are studied by means of
stepwise tracking in the example of a 3 to 10 GeV muon
ring. In the last part we show how the limitation on the
achievable turn number mentioned in the first part can be
bypassed using advanced scaling FFAG lattices.

GENERAL CONSIDERATIONS ABOUT
HARMONIC NUMBER JUMP

ACCELERATION

In a circular accelerator, the condition for a particle to
cross an RF cavity with the same phase every turn is known
as

fRF = h · frev, (1)

where fRF is the RF frequency, frev is the particle revolu-
tion frequency, and h is an integer called harmonic number.

If the revolution frequency varies with the particle en-
ergy, as it is the case for FFAG rings, it is still possible to
satisfy the synchronization condition of Eq. 1 while using
a constant RF frequency. To do so the harmonic number h
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must be changed of an integer number every turn. This is
how works a microtron [5], and the purpose of this section
is to discuss the use of this method in FFAG rings.

The mathematical formalism used in the following chap-
ters is based on Berg’s paper [6].

Single Cavity Case

We consider here a non-isochronous ring with a single
RF cavity working at constant frequency fRF . The har-
monic number jump condition is

Ti+1 − Ti =
mi

fRF
, mi ∈ Z, (2)

where Ti and Ti+1 are the time needed by the particle to
cover the turn number i and i + 1 respectively, and mi is
the number of harmonics jumped between turns i and i+1.

Linearizing the variation of T around the particle energy
at turn i, one gets

T (E) = T (Ei) + (E − Ei) · ∂T

∂E

∣
∣
∣
∣
Ei

. (3)

Eq. 2 becomes

Ei+1 − Ei =
mi/fRF

∂T
∂E

∣
∣
Ei

. (4)

If T does not depend linearly on the particle energy,
∂T
∂E

∣
∣
Ei

is function of the turn number. Disregarding the
possible variation of mi, Eq. 4 means that the energy gain
has to vary from one turn to the next and be kept propor-
tional to the inverse of ∂T

∂E

∣
∣
Ei

.

Limitation on the Maximum Turn Number

In a circular ring with a single RF cavity, the variation of
revolution time between two turns is

Ti+1 − Ti =
2π · ΔRi

βic
, (5)

where ΔRi is the variation in average orbit radius between
turn i and i + 1, and βic the particle velocity. Combining
this equation with Eq. 2, one gets

ΔRi =
miβic

2πfRF
=

miβiλRF

2π
, (6)

with c
fRF

= λRF , the RF wavelength. In the case of al-
ready ultra-relativistic particles (β ≈ 1), if we want to ac-
celerate over Nt turns, jumping exactly one harmonic every
turn (mi = 1, ∀i) we have to accept an average beam ex-
cursion of

average excursion =
Nt

2π
· λRF . (7)
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If the number of turn is larger that 6, the average excursion
gets larger than the RF wavelength. In a ring with constant
excursion, such as a scaling FFAG ring, RF cavity design
issue limits then the achievable number of turns.

N Cavities Distributed Around the Ring

We now consider a ring with N RF cavities homoge-
neously distributed around (see Fig. 1). If the particle en-
ergy were not changed during the turn, the time needed to
cover one turn would have been T (Ei). But the particle
crosses N cavities every turn, and its energy varies from
one cavity to the next. T becomes function of the position
around the ring. The time needed, from the cavity number
k, to travel all over one turn is the sum of the times of flight
between every single cavity:

T(Ei,k) =
N−1∑

j=0

T (Ei,k+j)
N

(8)

Ei,k is the particle energy after crossing cavity k the ith

turn. With this notation Ei,k+N = Ei+1,k. At the begin-

Figure 1: N cavities (numbered 0 to N-1) homogeneously
distributed around a circular ring.

ning of turn i, we assume that cavity number 0 works at
constant frequency f0, and that

f0 =
hi

T(Ei,0)
hi ∈ Z. (9)

We also assume that during the turn i every cavity pro-
vides the same amount of energy gain ΔEi, and that the
total amount of energy gain follows Eq. 4:

ΔEi =
Ei+1,0 − Ei,0

N
=

mi/f0

N · ∂T
∂E

∣
∣
Ei,0

(10)

In this case the linearization of T around the energy Ei,0

gives

T (Ei,k) = T (Ei,0) + k · ΔEi
∂T

∂E

∣
∣
∣
∣
Ei,0

. (11)

Combining Eq. 8 and Eq. 11 one can get

T(Ei,k) = T (Ei,0) +
2k + N − 1

2
·ΔEi

∂T

∂E

∣
∣
∣
∣
Ei,0

. (12)

If we would like to arrive every turn with the same RF
phase in the cavity number k:

fk =
hi

T(Ei,k)
, (13)

which gives using Eq. 9, Eq. 10, and Eq. 12

fk =
f0

1 + mi

hi
· k

N

. (14)

If we assume that hi is large, and much larger than its vari-
ation during the acceleration cycle (i.e. hi ≈ h0), we get

fk ≈ f0(1 − mi

h0
· k

N
), k = {0..N − 1}. (15)

Disregarding the possible variation of mi, fk depends
linearly on k and does not depend on the turn number. Ev-
ery cavity can work at a constant frequency, but each cavity
has to have a different frequency.

The fact that every cavity has to work at a frequency that
is function of its position k around the ring implies that
acceleration is only possible in one direction of rotation.
If one wants to accelerate a particle and its anti-particle in
the same time, theses two particles cannot be circulated in
opposite directions.

EXAMPLE OF A 3 TO 10 GEV MUON
SCALING FFAG RING

Double Beam Lattice Design

It exists a solution to circulate a particle and its antipar-
ticle in the same direction in a scaling FFAG ring. In such
a lattice two identical scaling FFAG magnets with reversed
polarity are used. Figure 2 shows trajectories of a parti-
cle and its anti-particle going in the same direction in the
lattice described Table 1.
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Figure 2: Closed orbits of μ+ and μ− circulating in the
same direction. Results are obtained from Runge-Kutta
stepwise tracking in hard-edge field.

4D Longitudinal + Horizontal Tracking

Simulation of harmonic number jump acceleration over
8 turns, with an initial beam emittance of 0.21 eV.s (lon-
gitudinal) × 10 000 π mm.mrad (normalized horizontal),
are presented Figs. 3 and 4. Particle tracking is done with
Runge-Kutta integration in soft edge fields (linear fringe
field falloff) and thin RF cavity kicks. Lattice and RF pa-
rameters are described in Table 1. It is important to notice
that the RF peak voltage is kept constant. Particle phase
changes by itself turn after turn, as shown on Fig. 3. This
phase change provides a variation in energy gain conpara-
ble to the one described in Eq. 4.
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Table 1: 3 to 10 GeV Muon Ring Parameters

Lattice type scaling FFAG - double beam
Mean radius 120 m
Number of cells 72
Field index k 145
Packing factor 0.7
Bmax 2.6 T
Horiz. phase adv. per cell 93.2 deg.
Verti. phase adv. per cell 30.2 deg.
Mean RF frequency ∼ 400 MHz
RF peak voltage 1.6 GV/turn
Number of RF cavities 72
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Figure 3: 8 turns acceleration cycle plotted in the longitudi-
nal phase space, at the location of cavity number 0. Initial
beam emittance is 0.21 eV.s × 10 000 π mm.mrad (normal-
ized).
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Figure 4: First turn (red squares) and last turn (green dots)
of the 8 turns acceleration cycle plotted in transverse phase
space. Beam emittance is 0.21 eV.s × 10 000 π mm.mrad
(normalized). The horizontal beam spread of the last turn
is due to the effect of dispersion (beam is not mono-
energetic).

REDUCED EXCURSION AREA IN A
SCALING FFAG RING

In the example described in the previous section, the to-
tal excursion is constant all around the ring and is about
0.98 m. As predicted in Eq. 7 this excursion is about
1.3 times the cavity wave length. To avoid cavity design
problem related to such a large beam excursion, we would
like to create reduced excursion areas in which RF cavities
could be installed.

Principle of a possible excursion reducer insertion is pre-
sented in Fig. 5. Three scaling FFAG sections with differ-
ent geometrical field index k are represented. P0 is the ref-
erence momentum. For other momentums a betatron oscil-
lation is exited. If the k2 section has a total phase advance
of 180 deg., and if

2
k2 + 1

=
1

k1 + 1
+

1
k3 + 1

, (16)

the excursion is reduced around the momentum P0. Par-
ticle tracking results in such an insertion are presented in
Fig. 6.

Once the excursion is reduced, FFAG straight sec-
tions [7] can also be added to increase the available space
for RF cavities.

Figure 5: Principle of excursion reducer π section.

Figure 6: Here excursion is reduced from 0.98m to 0.50 m
with the help of a π section with k = 192.
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