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Abstract 
In this paper the 6x6 linear matrix for a beam transport 

through a magnetic solenoid with off-axis reference orbit 
is derived using the hard-edge fringe field model. As an 
example, the result of analytical and numerical study of a 
bunch-compressor consisting only of solenoids and 
quadrupole lenses is presented. 

INTRODUCTION 
Magnetic solenoids have been widely used for focusing 

low energy beams (below 10 MeV for electrons, for 
example). Due to the rotational symmetry, a solenoid 
minimizes the number of aberrations, similar to the 
electrostatic round lenses. Yet, electrostatic lenses are 
effective in focusing only for very low energy particles. 
For electrons, the upper limit in energy is around 100 keV. 

Due to the rotational symmetry, a magnetic solenoid 
with the beam on axis doesn’t generate linear dispersion, 
nor does it cause linear dispersion in time-of-flight for 
relativistic particles. When the beam is off axis, the 
rotational symmetry is broken and the reference orbit is 
no longer a straight line. As a result, the off-momentum 
particle goes through a different path, generating linear 
dispersion in both transverse and longitudinal coordinates. 
The purpose of this paper is to derive the analytical 
formula for the 6x6 linear matrix for a such case.  

THE OFF-AXIS ORBIT 
For on-axis orbit, the traditional way of solving the 

equations of motion of a solenoid is using polar 
coordinates. When the orbit is off axis, the rotational 
symmetry is broken and the polar coordinates are not the 
easiest to use. As a result, we adopt the Cartesian 
coordinates. In terms of the field distribution, we choose 
the simplest one without losing the essence of the physics, 
which is the hard edge model. The on-axis field is: 
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where 0B  is the peak field on axis, L is the length and 

( )zθ  is the step function defined as: 
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To the lowest order, the off-axis field is [1]: 
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where ( )zδ  is the delta function. 
Clearly the solenoid can be divided into three regions, 

i.e., the entrance, the body and the exit and the equations 
of motion can be solved analytically in each region. Let’s 
consider the case that at the entrance of the solenoid 

−= 0z , the coordinates are: 
( ) ( ) ( ) ( ){ } { },0,0,,,0,0,0,0 00δ axbyax =−−−−  

where 0/ ppa x= , 0/ ppb y= and 0/ ppΔ=δ . 
Furthermore, the fifth variable is defined as 

( )00 ttvl −−=Δ , 
and it ensures that the new coordinate system is 
symplectic.  Here 0v  is the electron velocity and t  is the 
time. The equations of motion are: 
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The equations of motion can be solved near the 
entrance by plugging in the field distribution  and 
integrating from −= 0z  to += 0z . The result is: 
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where 
0

0
0 2 p

eB
=ω  is the Larmor frequency in z [2]. 

The motion in the body is simply a helix, which can be 
solved using geometry. For given 0B  and L , the 

procession angle is 02θ , where L00 ωθ = is the Larmor 
angle. The radius of the helix is: 
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Hence the position and momentum at the exit edge are 
( ) ( )

( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ),2sin2cos

2cos00

,2cos2sin

2sin
0

0

,sinsinsincos

2sin0

,cossincoscos

2cos0

00000

00
0

00000

00
0

00
0

0
000

0000

00
0

0
000

0000

θθω

θθ

θθω

θθ

θθ
ω

θθ

θθ

θθ
ω

θθ

θθ

ax
p

pLb

ax
p

p
La

a
x

rYLy

a
x

rXLx

c

c

c

c

+=

−=+

+−=

−−=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−+=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−+=+

+
⊥−

+
⊥−

−

−

 

where 0cθ  is defined as 
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The position and momentum after the exit edge are: 
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It is worth noting that 
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which means that the angular momentum acquired at the 
entrance is removed at the exit.  

THE 6x6 MATRIX 
Based on the off-axis orbit, we can derive the linear 

matrix by solving the equations of motion with the initial 
position and momentum 
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and keeping only the linear terms. After straightforward 
yet somewhat lengthy and tedious algebraic manipulation, 
we obtain: 
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Note that ./00 cv=β  Using Mathematica [3], we have 
been able to verify that the matrix is symplectic. 

Since the linear matrix is coupled, such a device tends 
to complicate matters in general. As for the case of on-
axis orbit, a pair of identical solenoids with equal but 
opposite field produces an uncoupled linear matrix. One 
special case of such a pair that may be useful is the one 
where 00 =a  and 2/0 πθ = . The linear matrix of the 
solenoid pair for this case is: 
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A BUNCH COMPRESSOR 
At some point we were curious if one can build a bunch 

compressor using only a set of off-axis solenoids and 
quadrupole lenses. The motivation was a significant time-
off-flight delay that one can possibly obtain and 
seemingly easy adjustment for R56 that allows even 
changing the sign of R56. Thus, we studied the simplest 
possible scheme with the bunch compressor consisting 
only of three pairs of solenoids and two quadrupoles. The 
quadrupoles are placed before and after the center 
solenoid pair. The approximate solution was found first 
using Mathematica assuming hard edge fringe field and 
thin quadrupoles. A more realistic model was established 
using COSY INFINITY [4] assuming the fringe field with 
the shape of a hyperbolic tangent function and finite 
length quadrupoles. The main parameters are listed below. 

 
Beam energy Ek0 100 MeV 
Solenoid field B0 1.266 T 
Larmor angle θ0 75.73 deg. 
Solenoid length L 0.7 m 
Solenoid radius R 3 cm 
Distance LD 4.6 m 
Quad gradient kq 0.1066 1/m 
Linear compression R56 5.20 cm 
Quadratic compression T566 -225 cm 
Total length Ltot 14.3 m 

 
Note that R is the inner radius of the solenoids and LD 

is the distance between the center and the outer solenoid 
pairs. The fact that θ0 is not 90 degrees is due to the finite 
width of the fringe region (the solenoids within one pair 
are 30 cm apart). The analytical solution is 1.5 T and 90 
degrees. The large T566 (~ 40 times R56) compared to the 
conventional bend magnet compressor (1.5 times R56) 
makes it impractical. But if very large T566 is needed in 
some application, the magnetic solenoid bunch 
compressor could be a viable solution. 
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