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Abstract 
An adiabatic warm-fluid equilibrium theory for a 

thermal charged-particle beam in an alternating gradient 
(AG) focusing field is presented. Warm-fluid equilibrium 
equations are solved in the paraxial approximation and the 
rms beam envelope equations and the self-consistent 
Poisson equation, governing the beam density and 
potential distributions, are derived. The theory predicts 
that the 4D rms thermal emittance of the beam is 
conserved, but the 2D rms thermal emittances are not 
constant. Although the presented rms beam envelope 
equations have the same form as the previously known 
rms beam envelope equations, the evolution of the rms 
emittances in the present theory is given by analytical 
expressions. The beam density is calculated numerically, 
and although it does not have the simplest elliptical 
symmetry, the constant density contours are ellipses 
whose aspect ratio decreases as the density decreases 
along the transverse displacement from the beam axis. For 
high-intensity beams, the beam density profile is flat in 
the center of the beam and falls off rapidly within a few 
Debye lengths; and the rate at which the density falls is 
approximately isotropic in the transverse directions. 

INTRODUCTION 
A fundamental understanding of the equilibrium and 

stability properties of high-intensity electron and ion 
beams in periodic focusing fields is important in high 
energy density physics research [1], and in the design and 
operation of particle accelerators [2], such as storage 
rings, rf and induction linacs, and high-energy colliders. 
For such systems, beams of high quality (i.e., low 
emittance, high current, small energy spread, and low 
beam loss) are required. Exploration of equilibrium states 
of charged-particle beams and their stability properties is 
critical to the advancement of basic particle accelerator 
physics.  

There exists an extensive body of literature on Vlasov 
beam and cold-beam equilibria [3-7] that use a δ -
function phase-space distribution, which is unphysical. 
These theories do not take into account beam temperature 
effects. In addition, a formal multiple scale analysis (i.e., a 
third-order averaging technique) has been applied to 
obtain approximate Vlasov and thermal equilibria in 
periodic solenoidal and AG focusing fields [8]. Such an 
averaging procedure is valid for sufficiently small vacuum 
phase advances.  

Recently, we have developed warm-fluid [9] and kinetic 
[10] equilibrium theories for an adiabatic thermal 

charged-particle beam in a periodic solenoidal focusing 
field. The density profile of the adiabatic thermal beam 
equilibrium provides a more realistic representation of a 
laboratory beam than the uniform density profile in the 
KV-like beam equilibrium. Good agreement has been 
found between our theory and the experimental 
measurements [11] from the anode aperture to a distance 
prior to wave breaking.   

In this paper, an adiabatic warm-fluid equilibrium 
theory of a thermal charged-particle beam in a periodic 
quadrupole magnetic focusing field is presented. Warm-
fluid equilibrium equations are used to derive expressions 
for the flow velocity and beam density distribution, the 
rms beam envelope equations, and a self-consistent 
Poisson equation. A numerical technique for computing 
warm-fluid beam equilibria is developed and an example 
of the thermal beam equilibrium is presented. 

WARM-FLUID BEAM EQUILIBRIUM 
EQUATIONS 

We consider a thin, continuous, single-species charged-
particle beam, propagating with constant axial velocity 

zzV ê  through a quadrupole magnetic field. We solve the 
warm-fluid equilibrium equations [4] making use of the 
paraxial approximation. Further, we seek the solution 
associated with adiabatic beam propagation in a periodic 
quadrupole magnetic focusing. We can derive that the 
product of the transverse temperature and the effective 
transverse rms beam area is a constant, i.e., 

( ) ( ) ( ) constsysxsT brmsbrms =⊥ ,  (1) 

where xbrms and ybrms are the rms beam envelopes. Also, we 
seek a solution for the equilibrium beam velocity profile 
of the form 
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where c is the speed of light in vacuum and βb≈Vz /c.  
We integrate the warm-fluid momentum equation to 

obtain the density profile with the help of Eq. (2) 
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where f(s) is an arbitrary function of s to be determined 
later [see Eq. (9)], self(x,y,s) satisfies the Poisson 
equation ( ) ( ) ( )syxqnsyxyx b

self ,,4,,2222 πφ −=∂∂+∂∂ , q and 
m are the particle charge and rest mass, respectively, 

bγ  is 
the relativistic mass factor, which, to the leading order, is 

( ) 2121 −−== bb const βγ . 
Using the density profile in Eq. (3), we calculate the 

rms beam envelopes in the x- and y- directions 
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where 22322 cmqNK bbb βγ≡  is the self-field perveance and  
Nb is the number of particles per unit axial length.  
To simplify the envelope equations (4) and (5), we 
postulate the following expressions ( ) =∂∂ xsyxx self ,,φ  

( ) ( ) ( )[ ]sysxsxqN brmsbrmsbrmsb +−  and ( ) =∂∂ xsyxy self ,,φ  

( ) ( ) ( )[ ]sysxsyqN brmsbrmsbrmsb +− . We numerically demon-
strate that the two expressions are satisfied. In Fig. 1, we 
plot the percentage differences between the right-hand 
side and left-hand side of the two expressions versus the 
scaled normalized perveance 

DthSKK 44ˆ ε≡  for  
xbrms/ybrms=2. We use the calculated potential and density 
profiles to compute the left-hand sides, whereas the right-
hand sides are evaluated analytically. As shown in Fig. 1, 
for a wide range of K̂  the differences are less than 1.1%, 
which is small. Similar results are obtained for the ratio 
xbrms/ybrms ranging from 1 to 5. Therefore, we conclude 
that the postulated expressions are satisfied. 

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

K̂K̂

%
in

  
di

ff
er

en
ce

%
in

  
di

ff
er

en
ce

( )
x

,y,xx
self

∂
∂ 0φ ( )

x
,y,xx

self

∂
∂ 0φ

( )
y

,y,xy
self

∂
∂ 0φ ( )

y
,y,xy

self

∂
∂ 0φ

 
Figure 1: Plots of the percentage differences between 

( ) xsyxx self ∂∂ ,,φ  and ( ) ( ) ( )[ ]sysxsxqN brmsbrmsbrmsb +−  

(circles) and between ( ) xsyxy self ∂∂ ,,φ  and 

( ) ( ) ( )[ ]sysxsyqN brmsbrmsbrmsb +−  (triangles) versus the scaled 

normalized perveance K̂  for xbrms/ybrms=2. 

We introduce the 2D rms thermal emittances of the 
beam, εxth  and εyth , defined by 
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in the x- and y- directions, respectively. Here, the 
statistical average of χ is defined in the usual manner by 

∫−
Γ

= yxbb dvdxdydvfN χχ 1  with fb being the equilibrium 

particle distribution function. The adiabatic condition in 
Eq. (1) implies that εxth εyth=const. It follows that the 4D 
rms thermal emittance ε4Dth is a constant, i.e., 
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By demanding that the total number of particles per unit 
axial length is conserved, we can determine 

( ) ( ) ( )sysx
Csf

brmsbrms

≡   (9)  

where C is a constant of integration.  

EXAMPLE OF A WARM-FLUID BEAM 
EQUILIBRIUM 

We developed a numerical code to solve the beam 
density and potential profile as well as the beam envelope 
equations.  

As an example, we consider a thermal beam focused by 
a periodical quadrupole magnetic focusing field with the 
periodic step function κq(s)= κq(s+S) with a filling factor 
of η=0.3 and a strength of S2κq(0)=15 [please see Ref. 4 
for the definition of the step function].  

We use the numerical code to calculate density profiles.  
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Figure 2: Plot of the difference between the ratio of the 
semi-axis of the contours of constant density and the ratio 
of the rms envelopes sizes in percent. 
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Although the constant-density contours are ellipses, the 
density profile does not satisfy the simplest elliptical 
symmetry condition. This is illustrated in Fig. 2 for a 
thermal beam with 4ˆ =K  at s=0, where the percentage 
difference between the ratio of the semi-axes of constant-
density contour -a/b, and the ratio of the rms envelopes -
xbrms/ybrms, is plotted as a function of the density. It can be 
observed in Fig. 2 that the ratio of a/b decreases as the 
density decreases. 

In Fig. 3 we plot the beam density profiles along the x- 
axis and y- axis, respectively, for the same beam as shown 
in Fig. 2. The normalized rms beam envelopes for this 
beam at s=0 are Sx Dthbrms 44ε =1.278 and Sy Dthbrms 44ε  
=0.785. The beam density profile is flat near the center of 
the beam and then it falls off within a few Debye lengths. 
Here, the Debye length is defined as 

( ) ( )snqsTk bBbD ,0,04 22 πγλ ⊥≡ , which is evaluated to be 

0.1714 4 =SDthD ελ .  
It appears in Fig. 3 that the density falls off 

approximately at the same rate in the x- and  y- directions. 
To quantitatively characterize the density fall-off, we 
compute the derivatives of the density profiles in the x- 
and  y- directions at the points where the density is equal 
to half of the peak density. For the beam density profile in 
Fig. 3, we find that the difference between the slopes in 
the x- and  y- directions is 8.6%. The beam density profile 
falls off slightly faster in the y- direction. Although the 
density does not have the simplest elliptical symmetry 
(which is a key assumption in the classic derivation of the 
rms envelope equations [5]), the constant-density contours 
are ellipses. 
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Figure 3: Plot of the beam density profile along (a) x- axis 
and (b) y- axis for the same beam as shown in Fig. 2. The 
dashed curves are the equivalent KV beam distribution. 

CONCLUSIONS 
We presented a warm-fluid equilibrium theory for a 

thermal beam in a periodic quadrupole magnetic (AG) 
focusing field. We considered an adiabatic process and 
solved the warm-fluid beam equilibrium equations in the 
paraxial approximation. Because the thermal beam 
equilibrium is adiabatic, the 4D rms thermal emittance of 
the beam is conserved, but the 2D rms thermal emittances 
are not constant. The rms beam envelope equations were 
derived. Although the present rms beam envelope 
equations have the same form as the previously known 
rms beam envelope equations, the evolution of the rms 
emittances in the present theory is given by analytical 
expressions. The density does not have the simplest 
elliptical symmetry, but the constant-density contours are 
ellipses. For high-intensity beams, the beam density 
profile is flat in the center of the beam and falls off 
rapidly within a few Debye lengths, and the rates of 
density change in the transverse directions are 
approximately the same. 
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