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Abstract

Possible emittance growth due to a nonuniform parti-

cle distribution can be analyzed with a thermal equilibrium

state in various space-charge potential beams. The possible

emittance growth is given by a function of a space-charge

tune depression and a nonlinear field energy factor. The

nonlinear field energy factor is estimated in the thermal

equilibrium distribution on a cross-section in a beam. The

nonlinear field energy factor changes with space-charge po-

tential for the thermal equilibrium distribution. It is ex-

pected that the possible emittance growth will be decreased

effectively to consider in the thermal equilibrium.

INTRODUCTION

To generate a localized high energy density condition,

a particle beam with high current and rather low kinetic

energy must be focused into a small spot on a target. As

the beam with large volume in phase space is not able to

be focused into a small area, production of an intense and

low emittance beam is of great significance for various ap-

plications. Therefore transport of space-charge-dominated

beams with a low-emittance condition is key issue in ap-

plications such as warm dense matter (WDM) science and

heavy ion inertial fusion (HIF) [1, 2, 3].

The particle distribution becomes nonequilibrium state

during the beam manipulations, and it sometimes has a

large free energy. A nonuniform charge distribution of a

beam can cause significant emittance growth, especially in

the space-charge-dominated regime. Wangler et al. derived

an equation for emittance evolution along the transport [4],

and Reiser summarized the relation between free energy

and the emittance growth in nonstationary beams [5]. Lund

et al. showed the emittance growth caused due to the ther-

mal relaxation of the initial extreme nonuniform distribu-

tion [6].

In this study, we analyze the possible emittance growth

due to a nonuniform distribution with a thermal equilib-

rium. A nonlinear field energy factor is derived for the ther-

mal equilibrium distribution on a cross-section in a beam.

The results show that the emittance growth will be de-

creased effectively to consider in the thermal equilibrium.
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THEORY

Emittance Growth and Free Energy
The possible emittance growth εf/εi in nonstationary

condition is calculated by [5]

εf

εi
=

[
1 +

1
2

(
1

σ2/σ2
0

− 1
)

U

w0

]1/2

, (1)

where εf is the emittance at the final state, εi is the emit-

tance at the initial (nonuniform) distribution, σ/σ0 is the

tune depression given by the depressed and undepressed

phase advances (σ and σ0) per lattice period, and U/w0 is

the nonlinear field energy factor written with U = w−wu.
Here the field energy w per unit length is given as

w = π ε0

∫ rp

0

E2r dr, (2)

where ε0 is the permittivity of free space, rp is the pipe

(chamber) radius, and E is the self-field in the radial direc-

tion r. The field energy per unit length within the actual

beam volume is w0 = λ2/16π ε0, where the line charge

density λ is calculated by

λ = 2πq

∫ ∞

0

n(r) r dr, (3)

with q as the charge of the beam particle, and n(r) is the

number density along the radius. For the estimation of the

possible emittance growth due to the nonuniform particle

distribution, the factor U/w0 should be given in the arbi-

trary nonuniform distribution.

Thermal Equilibrium Distribution
The thermal equilibrium in a beam is described by [7, 8]

n(r) = n̂ exp

[
−γbmβ2

b c2k2
β0

2kBT
r2 − 1

γ2
b

qφ(r)
kBT

]
, (4)

where n̂ is the number density at the axis, γb is the relativis-

tic factor, m is the mass of the beam particle, βb is the beam

velocity divided by the light speed c, kβ0 is the wavenum-

ber of the betatron oscillation without the space charge ef-

fect, kBT is the beam temperature, and φ(r) is the space

charge potential. The kβ0 is determined by kβ0 = σ0/Lp,
where Lp is the one lattice period length.
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When the number density is rewritten by n(r) = n̂ ñ(r),
the normalized number density ñ can be expressed as

ñ(r) = e−Ψ̃, where Ψ̃ ≡ Ψ̃(r) is obtained by

Ψ̃ =
γbmβ2

b c2k2
β0

2kBT
r2 +

1
γ2

b

qφ(r)
kBT

. (5)

Using the Poisson equation, the dimensionless potential

Ψ̃ is calculated as [9]

(
γb

λD

rb

)2
r2
b

r

∂

∂ r

(
r
∂Ψ̃
∂ r

)
= 1 + Δ − e−Ψ̃, (6)

where Δ is the dimensionless parameter determined by the

tune depression [9],

σ

σ0
=

{
1 − [

∫ ∞
0

ρ ñ dρ]2

(1 + Δ)
∫ ∞
0

ρ3ñ dρ

}1/2

, (7)

rb =
√

2 < r2 > is the rms edge radius of the beam, and

λD is the Debye length at the axis. The scaled radius ρ =
r/γbλD can give the scaled Poisson equation [9, 10],

1
ρ

∂

∂ρ

(
ρ
∂Ψ̃
∂ρ

)
= 1 + Δ − e−Ψ̃. (8)

Here

γb
λD

rb
=

1√
2

( ∫ ∞
0

ρ ñ dρ∫ ∞
0

ρ3 ñ dρ

)1/2

. (9)

By using Δ obtained for σ/σ0 given, the normalized num-

ber density is approximately calculated by [10]

ñ ∼
(
1 + Δ/2 + Δ2/24

)2

{1 + I0(ρ)Δ/2 + [I0(ρ)Δ]2/24}2 , (10)

where I0(x) is a modified Bessel function of 0th order.

Beam Radius
The rms edge radius of the beam rb is calculated by

r2
b = 2

∫ ∞
0

r3 ñ(r) dr∫ ∞
0

r ñ(r) dr
, (11)

while in the case of the uniform density the beam radius a
is given by

a =
(

εb

kβ0 σ/σ0

)1/2

, (12)

where εb is the rms edge emittance. Also the ratio of the

Debye length to the beam radius is obtained by [8]

λD

a
=

[
8

(
1

σ2/σ2
0

− 1
)]−1/2

, (13)

for the uniform density profile in the beam core.

Self-Electric Field

The self-electric field is calculated by

E(r) =
q

ε0

1
r

∫ r

0

n(r) r dr =
qn̂

ε0

1
r

∫ r

0

ñ(r) r dr. (14)

When the electric field can be written by E(r) = Ê Ẽ(r),
the Ẽ(r) is given by

Ẽ(r) =
1
r

∫ r

0

ñ(r) r dr. (15)

Field Energy

According to the above discussions, the field energy per

unit length can be obtained by

w = w0
4(∫ ∞

0
ñ r dr

)2

∫ rp

0

Ẽ2r dr. (16)

While the field energy in the uniform particle distribu-

tion is described by wu = wui + wuo, where wui = w0

and wuo = 4w0 log(rp/rb) are the field energies for inside

and outside of the beam core. As a result, the field energy

in the uniform particle distribution can be written as

wu = w0

(
1 + 4 log

rp

rb

)
. (17)

Finally, the nonlinear field energy factor is given by

U

w0
=

4(∫ ∞
0

ñ r dr
)2

∫ rp

0

Ẽ2r dr −
(

1 + 4 log
rp

rb

)
.

(18)

RESULTS

Figure 1 shows the nonlinear field energy factor U/w0

as a function of tune depression σ/σ0. The nonlinear field

energy factors are calculated in cases for the Kapchinskij-

Vladimirskij (KV), waterbag (WB), parabolic (PA), Gaus-

sian (GA), and the thermal equilibrium (TE) distributions

as shown in Fig. 1. Since in the case with the strong space-

charge regime the TE distribution becomes uniform shape,

the U/w0 closes to 0. On the other hand, the U/w0 for the

weak space-charge regime approaches that for GA, because

the TE distribution comes up to the GA distribution in the

regime.

Figure 2 shows the possible emittance growth εf/εi,

which can be solved by using Eqs. (1) and (18), as a func-

tion of tune depression σ/σ0. Figure 2 indicates that the

possible emittance growth strongly depends on the particle

distribution and even in strongly space charge dominated

regime the possible emittance growth will be decreased in

case of the beam with TE distribution.
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Figure 1: Nonlinear field energy factor as a function of

σ/σ0, for U/w0 = 0 as the KV (black), for WB (green),

for PA (yellow), for GA (cyan), and for TE (red with circle)

distributions.
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Figure 2: Possible emittance growth as a function of σ/σ0

for GA (cyan) and TE (red with circle) distributions.

DISCUSSION

Consider the situation in the final bunch compression in

the HIF accelerator complex. During the final bunch com-

pression, the tune depression of the beam bunch is chang-

ing along with the beam current increase. The tune depres-

sion history depends on the compression schedule.

In our previous study, the tune depression during the

bunch compression changes from 0.9 to 0.15 [11]. Multi-

particle simulation shows the U/w0 changes during the

bunch compression [12], and the reconstruction of the dis-

tribution is occurred by the space-charge effect. This means

that even though the beam has a thermal equilibrium distri-

bution at injection of the buncher, it can produce significant

emittance growth during the transport.

In the case of the assumption for the beam as a GA dis-

tribution, the possible emittance growth is estimated as a

function of the tune depression as indicated in Fig. 2. While

as shown in Fig. 2, the possible emittance growth can be

estimated as almost constant for the TE distributed beam,

even in the different compression schedule. For this reason,

the estimation of the emittance growth during the bunch

compression becomes easy for the TE beam, and it is a

more realistic situation. Because it is indicated in the pre-

vious numerical result [13] that the beam keeps an equilib-

rium condition during the bunch compression.

CONCLUSION
The transverse particle distribution and the nonlinear

field energy factor depended on the tune depression for the

TE distribution. Although U/w0 of TE beam increases

when the tune depression is near unity, the σ/σ0 term

compensates the increase of possible emittance growth as

shown in Eq. (1). It was shown by the static analysis that

with keeping the beam at thermal equilibrium the possible

emittance growth will be able to be decreased effectively.

This is considered to be particularly important for the ap-

plications such as the bunch compression for the HIF driver

and ion-beam driven WDM experiments.
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