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Abstract 
Non-homogeneity is a characteristic naturally present in 

non-neutral beams. Recently, a set of works has been 
developed by us for the case of beams initially 
homogeneous, making possible that relevant macroscopic 
quantities such as the RMS radius and emittance could be 
determined at equilibrium as functions of characteristic 
parameters of beam phase-space and of initial conditions. 
The present work intends to investigate the influences of 
the initial inhomogeneity in the beam route to 
equilibrium. Through the same methodology introduced 
in the studies for the homogeneous beams, both emittance 
and beam envelope have been obtained as functions of the 
magnitude of the inhomogeneity and some additional 
parameters associated with geometry of beam phase-
space. The results obtained with this investigation have 
proven to be useful not only to better understand the 
effects of inhomogeneity over beam dynamics but also to 
provide physical background to the investigations 
previously carried out for homogeneous beams. 

I TRODUCTIO  
Homogeneous beams with mismatched envelopes 

usually evolve to an equilibrium-like state after some 
characteristic time during its magnetic focusing inside the 
confinement channel. This process is macroscopically 
characterized by a not negligible growth of emittance [1], 
which is a statistically-averaged beam quantity that 
involves spatial and velocity coordinates of its constituent 
particles. If beam is initially cold (all beam particles have 
velocities that can be neglected), one can assure that the 
increasing of emittance is unconditionally associated with 
increasing of particle velocities. Beam earns kinetic 
energy or, using jargons of the field, beam is 
progressively heated during magnetic focusing. Since 
overall energy is a constraint of beam motion, thus if 
kinetic energy increases (in this case from an initial zero 
value to some of equilibrium), effective potential energy 
must decrease, conserving total energy. Large non-linear 
resonances are responsible in to excite beam particles 
individually, converting potential energy stored in 
envelope oscillations into kinetic energy that supplies the 
chaotic movement of these particles [2][3]. 

Some similar emittance growth also occurs for initially 
non-homogeneous beams. Initially cold and 
inhomogeneous beams also direct to its equilibrium with 
a systematic heating of its particles [4]. Inhomogeneity 
leads beam fluid elements to oscillate with a frequency 
that is dependant of spatial position. Note the force that 

beam exerts over each particle is nonlinear, because its 
density is intrinsically non-homogeneous. Even 
consecutive fluid elements (those displaced initially with 
an infinitesimal spatial distance, that has in this way much 
similar oscillating frequencies), in a finite time will lose 
coherence and inevitably will collapse. From beam phase-
space picture, this collapse will look like as particle jets, 
which are the forerunner instability for beam reaches its 
equilibrium. If envelope mismatch is eventually present, 
the previous commented large resonant islands also exist 
to provide kinetic energy to the particles of non-
homogeneous beams. However, even in the absence o 
envelope mismatch, heating process still occurs, inducing 
phase-space mixing and consequently that beam reaches 
its equilibrium. This is due to another physical 
mechanism, which it has been called of charge 
redistribution by us. In the same manner particles couple 
with envelope oscillations, particles can also couple with 
charge redistribution oscillations. The main difference 
between both couplings is that the first one is resonant but 
the second one usually is not [3]. Resonant interaction is 
achieved in just some limit situations. But this discussion 
is out of scope of the current work. 

The purpose of this work is to determine equilibrium 
quantities of an initially inhomogeneous beam as a 
function of its initial conditions. The system considered 
here is an initially cold, azimuthally symmetric, and non-
homogeneous beam, focused by a constant magnetic field 
and encapsulated by a conducting pipe. Azimuthal 
symmetry has beam considered, which means that 
essentially initial state is represented by just the 
magnitude of inhomogeneity, here denoted as . Beam is 
initially considered matched, situation in which envelope 
oscillations are negligible. 

A ALYTICAL DESCRIPTIO  
One way of achieving the goal is to extend the 

methodology previously introduced in reference [5] for 
homogeneous beams to the case of an initially 
inhomogeneous beam. Here, beam has been considered 
inhomogeneous with a particle density ( , = 0) in a 
parabolic shape ( , ) = + 2 − 1 , 0 ≤ ≤0, < ≤ (1)

in which  represents beam envelope,  is the radial 
coordinate in the Larmor frame and  is the pipe radius. 
Quantity  designates the magnitude of inhomogeneity 
ascribed to the beam. Figure 1a shows the appearance of 
this density in phase-space for = 0.5. All results have 
been computed by the means of full self-consistent -
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particle beam numerical simulations employing Gauss’ 
Law to describe interactions between beam particles [3]. 

Particle density of equation (1) after some characteristic 
time  (time in which halo is formed) assumes another 
format, which has to be modeled. A snapshot of beam 
phase-space at equilibrium is shown in Figure 1b. Note 
the absence of the curve region naturally present in the 
analysis of a homogeneous beam [2][3]. This is just 
because beam has been considered initially matched, 
which means = 1, with the same rescaling technique 
(of spatial and temporal variables) adopted for 
homogeneous beams [3][5]. Then halo in this case is 
composed by the warm particles, since hot particles do 
not exist. Beam density at equilibrium can be modeled as ( , ≥ ) = ( ) + ( ),   0 ≤ ≤( ),   < ≤0,   < ≤  (2)

in which  is the core density and  is the halo density, 
composed by just the warm particles. Once particle jets 
expel all particles that makes  to be inhomogeneous, at ≥   can be described by a homogeneous density ( , ≥ ) = (1 − ) / , (3)
in the same form it was in reference [2], in which  is 
core radius at equilibrium,  is the fraction of halo 
particles given by ≡ / , and = (1 − )  is 
the number of core particles since relation = +  
holds for every time of beam dynamics. 

 
Figure 1: Beam phase-space structure in two distinct 
times of its dynamics inside the magnetic focusing 
channel. Panel (a) show beam phase-space at initial state = 0 and (b) show beam phase-space after equilibrium is 
reached, at = 796.3. Results have been obtained 
through numerical simulation with magnitude of 
inhomogeneity = 0.5 and with a matched envelope of ( = 0) = = 1. 

The rectangular region where warm particles reside 
have to be also described. By visual inspection of Figure 
1b, one can consider that particle density in phase-space 
is constant ( , ) = , which extends over horizontal 
axis by 0 < <  and over vertical axis by − ( ) << ( ). In this case, ( ) is just a horizontal line, 
whose value is not important for the calculations. 
Considering this geometry aspects, density  assumes ( , ≥ ) = 1 ( , )( ) = 2 1, (4)

where  is the rectangular region size over  axis. 
Expression =  for the number of warm 

particles has been employed to eliminate  and other 
quantities of equation (4). 

One should note that with equations (3) and (4), beam 
density at equilibrium ( , ≥ ) of equation (2) is 
completely defined. Note that equation (2) is dependant of 
fraction , core size , halo size , and the total number 
of beam particles . In fact, as one will notice in the next 
paragraphs,  is not a variable, because quantities of 
interest are per beam particles. Also,  and  are 
geometric parameters of beam phase-space, determinable 
a priori by visual inspection of simulation results. 
Actually, the only one free parameter in the model to be 
present will be the fraction of halo particle . For the 
initial state, described by equation (1), the same reasoning 
holds. No variables exist, since beam is matched and  is 
a quantity defined as initial condition. Similar results have 
been obtained in reference [3] for homogeneous beams, 
being the main difference associated to the initial state, in 
which beam initial mismatch is replaced by the magnitude 
of inhomogeneity . 

 
Figure 2: Comparison between results provided by 
numerical simulations and the exact analytical model as a 
function of magnitude of inhomogeneity . Results are 
shown in (a) for the fraction  and in (b) for emittance . 

Now it is the necessary moment of invoking energy 
conservation. Beam total energy is a constant of the 
motion. That is, once a given energy is initially ascribed 
to the system, it is possible to write an equation in the 
form 12 ( ) + 12 ( ) + ℰ ( ) = , (5)

that relates beam energy stored by the particles (the first 
two terms, potential plus kinetic energy) and fields (last 
term, ℰ ( )), which is valid for the entire beam dynamics. 
Energy stored in the fields is given by ℰ ( ) = 14 |∇ | , (6)

where dimensionless potential  satisfies ∇ = − 2 ( , ), (7)
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the Poisson Equation, for every time . Beam perveance 
 and the coefficient of constant magnetic focusing  

are unimportant due to rescaling scheme adopted [2]. 
In this way, one can compute energy at initial 

nonstationary state and energy at the final stationary state. 
Since energy is conserved, both obtained expressions can 
be equalized as ( = 0) = ( ≥ ) = = constant. (8)
Energy at initial state ( = 0) is evaluated inserting 
equation (1) into equation (5), with the aid of equations 
(6) and (7). The obtained expression has to be a function 
of just . Energy at equilibrium ( ≥ ) is determined in 
a similar fashion. Employing equation (8) to connect 
energy in both states and collecting terms in powers of 
fraction o halo particles , one has a simple polynomial ( , ) + ( , ) + ( , ) = 0, (9)
in which the coefficients have the form ( , ) = 12 ln + 23 − 58( , ) = ln − 23 − 2 + 3 + 34( , ) = − 12 ln( ) + 2 − 48 − 12

, (10)

which are functions of just known quantities. 

RESULTS 
The results calculated for the fraction of halo particles 

 and for emittance  at equilibrium through numerical 
simulations and the exact analytical model are compared 
in Figure 2. Satisfactory accordance between both is 
perceived. Calculations have been performed for many 
values of magnitude of inhomogeneity , to say 0 ≤ ≤1, with steps of Δ = 0.1. For obviously aspects, beam 
envelope at equilibrium has not been calculated. 

In Figure 3, a comparison between the core density  
and the halo density  is done. Results provided by 
numerical simulations are represented with histograms 
and the ones provided by the exact analytical model 
appear as solid lines. Again, a nice agreement is obtained.  

 
Figure 3: Histograms for beam particle density computed 
through numerical simulations (bins) and the exact 
analytical model (solid line). Comparison occur in panel 
(a) for beam core with Δ ≅ 0.0866 and in panel (b) for 
beam halo Δ ≅ 0.1194. Magnitude of inhomogeneity = 0.5. 

Finally, complete results about the comparison of the 
model with numerical simulations are shown in Table 1. 

There, for each , the coefficients of polynomial in 
equation (9) are presented as well as results for beam 
equilibrium quantities of interest are shown. Further 
discussions will be a subject of future works. 
Table 1: Comparison of the exact analytical model with 
results provided by numerical simulations for many 
values of magnitude of initial beam inhomogeneity . 

  = 0 = 0.2 = 0.4 

  = 1 = 1 = 1 

  = 1 ≅ 1.3 ≅ 1.3 

Ex
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na

ly
tic

al
 so

lu
tio

n ( , ) = 1/24 ≅ 0.019002 ≅ 0.019002 ( , ) = −1/12 ≅ 0.038148 ≅ 0.019002 ( , ) = 0 ≅ −0.000833 ≅ −0.003333
 = 0 ≅ 0.02161 ≅ 0.08387 

 = 1/√2 ≅ 0.70807 ≅ 0.71085 
 = 0 ≅ 0.05239 ≅ 0.10361 

N
um

er
ic

al
 

si
m

ul
at

io
n  = 0 ≅ 0.02630 ≅ 0.08490 

 = 1/√2 ≅ 0.71283 ≅ 0.73364 
 = 0 ≅ 0.05475 ≅ 0.09961 

  = 0,6 = 0.8 = 1.0 

  = 1 = 1 = 1 

  ≅ 1.3 ≅ 1.3 ≅ 1.3 

Ex
ac

t a
na

ly
tic

al
 so

lu
tio

n ( , ) ≅ 0.018919 ≅ 0.019002 ≅ 0.019002 ( , ) ≅ 0.043100 ≅ 0.038148 ≅ 0.038148 ( , ) ≅ −0.007500 ≅ −0.013333 = −1/48 
 ≅ 0.18039 ≅ 0.30359 ≅ 0.44671 

 ≅ 0.71513 ≅ 0.72057 ≅ 0.72683 
 ≅ 0.15287 ≅ 0.19983 ≅ 0.24450 

N
um

er
ic

al
 

si
m

ul
at

io
n  ≅ 0.17010 ≅ 0.28090 ≅ 0.40110 

 ≅ 0.76578 ≅ 0.79441 ≅ 0.81434 
 ≅ 0.14447 ≅ 0.18314 ≅ 0.22734 
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