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Abstract

We report on a new numerical technique for the compu-
tation of geometrical wakes in three-dimensional LINAC
structures. The method utilises an explicit Finite-Volume
Time-Domain (FVTD) formulation. The numerical disper-
sion in all three axial directions is completely eliminated
by choice of an appropriate staggering of the field compo-
nents on the grid. Thus, contrary to most of the previously
reported techniques no splitting of the time-evolution oper-
ator is necessary. This results in large savings in computa-
tional time as well as in an improved numerical accuracy.
We have implemented this new technique in the PBCI code
and present some preliminary results.

INTRODUCTION

Future accelerator projects require high quality beams
with ultra short bunches. For the design of those projects
an accurate numerical prediction of the short range wake
fields in the different components of the accelerator is nec-
essary. Typical accelerator structures are, however, sev-
eral orders of magnitude longer than the size of elec-
tron bunches. The standard finite-difference time-domain
(FDTD) method would require a huge amount of compu-
tational resources for the numerical solution of the prob-
lem. For this reason, the Parallel Beam Cavity Interaction
(PBCI) code has been developed at TEMF for dedicated
short range wake field simulations [1].

Key elements of PBCI are the application of a mov-
ing window approach in combination with a Longitudinal-
Transversal operator splitting (LTLF) technique for the Fi-
nite Integration Technique (FIT) [4]. LTLF features no
numerical dispersion in the direction of bunch propaga-
tion [2]. The scheme, however, suffers under the separate
application of longitudinal and transverse update operators.
This makes the calculations comparatively expensive. In
addition, it adds an additional numerical dispersion error in
the transversal directions. This motivates the present inves-
tigation of computationally less expensive, dispersion-free
methods which are not based on operator splitting.

FINITE VOLUME DISCRETIZATION

Denoting by �E, �H , �J and � the electric and magnetic
field, current and charge density, respectively, the volume
integral form of Maxwell’s equations for non-dispersive

∗Work supported by the DFG.
† gjonaj@temf.de

media with permittivity ε and permeability μ reads [3]:

d
dt

∫

V

ε �E dV =
∫

∂V

d �A × �H −
∫

V

�J dV, (1)

d
dt

∫

V

μ �H dV = −
∫

∂V

d �A × �E, (2)

∫

∂V

d �A · ε �E =
∫

V

� dV, (3)

∫

∂V

d �A · μ �H = 0. (4)

The above integral formulation of Maxwell’s equations is
the starting point of Finite-Volume-type methods. In the
following, Maxwell’s equations are discretized on a Carte-
sian grid G. Traditional FVTD methods [5] allocate all De-
grees of Freedom (DoF) in the same control volume of G.
Contrary, the proposed scheme assigns the DoFs for each
component of the electric and magnetic field strengths, cur-
rent and charge density to different control volumes Vx,
Vy , Vz and Ṽ on G. Figure 1 shows the relation between
the used control volumes and the ”‘usual”’cell volume in
G. Additionally, the field and source DoFs associated with
each of the control volumes are shown in the figure.
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Figure 1: Control volumes (shaded) and the DoFs associ-
ated with them with respect to a cell volume in G (red).

Assuming constant field components within the respec-
tive control volumes, discrete versions of Faraday’s (2),
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Ampere’s (1) and Gauss’s (3) laws can be constructed. The
derivation of of the discrete Faraday’s law is sketched in
Fig. 2. According to (2) the volume integral of d

dt μHx is
determined by the integral over the areas (shown in red) of
the control volume Vx. Due to choice of field staggering,
the relevant electric field components on these areas are
uniquely known, so that the integrals are readily evaluated.
The other field components in Faraday’s law are treated in
the same manner. The spatial discretization of the obtained
scheme is of second order on a homogeneous and of first
order accuracy on an inhomogeneous Cartesian grid.
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Figure 2: Calculation of d
dt μHx (shaded volume Vx) in the

discrete Faraday’s law using the values of Ey and Ez on
the staggered red areas, Az and Ay .

MATRIX FORMULATION

Collecting the field and source DoFs within each con-
trol volume into the vectors e, h and j, respectively, the
discrete FV version of Maxwell’s equations is,

d
dt

M εe = Ch − V j (5)

d
dt

Mμh = −Ce (6)

SM εe = Ṽ � (7)

SMμh = 0 . (8)

M ε, Mμ, V and Ṽ are symmetric and positive definite
material matrices. These operators depend on the grid met-
rics as well as on the local material parameters ε and μ.
A discrete curl is defined by the symmetric matrix C and
the discrete divergence is denoted by S. In analogy to their
continuous counterparts the identity SC = 0 can be shown
to hold [6]. Thus, the matrix formulation of the scheme
builds upon a discrete vector analytical operator calculus
which is very similar to the FIT [4].

TIME INTEGRATION

For numerical integration the time is discretized with
time step Δt by t(n) = t(0) + nΔt. Denoting with e(n) and
h(n) the discrete electric and magnetic field DoFs sampled
at the time instance t(n) the discrete Faraday and Ampere’s
law are discretized in time by the Verlet-Leap-Frog (VLF)
integrator:

h(∗) = h(n) − Δt

2
M−1

μ Ce(n),

e(n+1) = e(n) + ΔtM−1
ε C

(
h(∗) − V j(n+1/2)

)
,

h(n+1) = h(∗) − Δt

2
M−1

μ Ce(n+1).

The fully time discrete scheme above is referred to Stag-
gered Finite Volume Time Domain (SFVTD) method. In
[6], the maximal stable time step of SFVTD for a homo-
geneous grid with grid spacing Δ, and a constant speed of
light c was found to be exactly equal to the Courant number
σ := cΔt

Δ = 1.

DISPERSIONAN ANALYSIS

A numerical phase velocity as close as possible to the
speed of light is important for the accurate simulation of
wake fields over long distances. The low numerical dis-
persion property must be fulfilled over a broad range of
frequencies and wave propagation directions. In this sec-
tion the accuracy of SFVTD in terms of dispersion error is
analysed and compared with those of the LTLF scheme and
non-split FIT.
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Figure 3: Directional dependence of the numerical phase
velocity v for three points per wavelength in the xz-plane
for LTLV, non-split FIT and the SFVTD method.

Making a plane wave solution ansatz exp j(ωt − �k · �r)
and using the dimensionless wave vector �β = Δ · �k and
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frequency ω̃ = Δt ω, the following numerical dispersion
relation for the SFVTD scheme is obtained:

sin2(
ω̃

2
) = σ2

⎛
⎝∑

γ

sin2(
βγ

2
) − 1

2

∑
γ �=δ

sin2(
βγ

2
) sin2(

βδ

2
)

⎞
⎠

γ, δ ∈ {x, y, z} . (9)

From (9) the numerical phase velocity v = cω̃/β is cal-
culated. Figure 3 shows v/c for a resolution of three points
per wavelength on the xz-plane. The phase velocity for
each of the schemes is evaluated at the respective stability
limit. The exact phase velocity v = c is never approached
by FIT, the LTLF method approaches it along the z-axis and
the SFVTD method approaches it along the x- and z-axis.
Also in between those exact cases, the SFVTD method is
superior to the LTLF scheme and in a large region also to
the non-split FIT. Fig. 4 shows the behaviour of the phase
error in 3D. It is clearly seen that SFVTD approaches its
minimal error along the coordinate axis, in contrast to the
FIT which has an optimum dispersion characteristics along
the diagonal directions.

Figure 4: Directional dependence of the error in the nu-
merical phase velocity v for three points per wavelength
for FIT and the proposed SFVTD scheme.

NUMERICAL VALIDATION

As a validation test the longitudinal wake potential of a
Gaussian line bunch with β = 1 and σz = 0.02cm passing
a closed pill box cavity on the axis is numerically calcu-
lated. The cavity has a gap length of 10cm and a radius
5cm. For the numerical solution of the problem, the pre-
sented SFVTD method was applied on a moving mesh. The
results are compared with the analytical solution [7] for a
Gaussian bunch (σz = 0.02cm) [7]. Figure 5 shows the
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Figure 5: Comparison of the analytical solution (black) of
the longitudinal wake field Wz inside a pill box cavity with
the numerical solution obtained by the SFVTD method for
three different grids.

fast numerical convergence toward the analytical solution
for different number of points per sigma (pps).

CONCLUSIONS

A non-split SFVTD with no numerical dispersion along
the coordinate axes has been presented. It has been theo-
retically demonstrated that the method has better numerical
dispersion properties in comparison to LTLF and the non-
split FIT. The numerical validation example shows, that the
method is capable for accurate short range wake field com-
putations in accelerator structures.
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