
EPICS-DDS*

N.Malitsky, J.Shah, BNL, Upton, NY 11973, U.S.A.
N.Hasabnis, Stony Brook University, Stony Brook, NY 11794, U.S.A.

Abstract
 This paper presents a new extension to EPICS,
approaching the Data Distributed Service (DDS) interface
based on the Channel Access protocol. DDS is the next
generation of middleware industrial standards, bringing a
data-centric publish-subscribe paradigm to distributed
control systems. In comparison with existing middleware
technologies, the data-centric approach is able to provide
a consistent consolidated model supporting different data
dissemination scenarios and integrating many important
issues, such as quality of service, user-specific data
structures, and others. The paper considers different
features of the EPICS-DDS layer in the context of the
high-level accelerator environment.

RATIONALE
 The Accelerator Online Model (AOM) is a collection
of characteristics and associated theoretical approaches
required for the successful analysis and control of
accelerator performance. Its particular implementation
depends on many factors, such as scope and complexity
of operational tasks, type of accelerator control system,
and others. Usually, AOM is built as one or several
middle-layer servers of a three-tier application
environment encompassing a low-layer with distributed
front-end computers controlling physical devices and an
open collection of high-level thick and thin client
applications. Despite the common infrastructure,
requirements of each layer are different. As a result, the
middle-layer servers in present accelerator
facilities work additionally as gateways connecting at
least two communication protocols and interfaces.

This paper proposes a new extension named EPICS-
DDS for developing a homogeneous high-level
application environment (see Figure 1) based on the
EPICS distributed infrastructure [1] and the Data
Distribution Service (DDS [2]) data-centric model. In this
approach, different layers and components communicate
via the common EPICS low level protocol, Channel
Access (CA), and the high-level interface between servers
and applications is implemented at the additional DDS-
oriented layer. In context of the DDS specification, the
different middle layers servers are considered as the
corresponding DDS publishers designed to provide the
states of the associated data structures shared by high-
level client-subscribers.

The rest of this report is broken into two parts. Section
2 gives a brief overview of the DDS model and section 3
describes the different features of the EPICS-DDS
extension using the list of dedicated examples.

Figure 1: High-Level Application Environment based on
the EPICS-DDS extension.

DDS DATA-CENTRIC ARCHITECTURE
DDS is the next generation of middleware industrial

standards, bringing a data-centric publish-subscribe
(DCPS) architecture to distributed control systems. The
overall conceptual model is shown in Figure 2 and
encapsulates the following major concepts:

Figure 2: Data-Centric Publish-Subscribe Model [3].

• Topics of Typed Global Data Space: a logical data
space in which applications read and write data
decoupled in space and time.

• Data Writer: data producer of the given topic.
• Data Reader: data consumer of the given topic. Data

reader can obtain data via two ways: (1) listener-
based asynchronous mechanism and (2) waitset-
based synchronous approach that blocks the
application until designated conditions are met.

• QoS policies: a rich set of characteristics that define
the behavior of the DDS systems (such as reliability,
liveliness, durability, latency budget, etc.)

__

*Work supported by DOE contract DE-AC02-98CH10886

Proceedings of PAC09, Vancouver, BC, Canada FR5REP002

Controls and Operations

T04 - Control Systems 4773

Similar to the OMG CORBA specification, DDS is
language neutral and can be implemented in programming
languages like Java and C++. In contrast with CORBA,
the DDS interface is also protocol neutral, facilitating its
deployment in different distributed systems. Moreover,
the DDS technology extends present run-time
environments with the relational-oriented model. It
creates a basis for developing consistent run-time
interfaces to complex hierarchical structures using the
well-established software engineering techniques.

EPICS-DDS MIDDLEWARE
Both EPICS Channel Access and DDS represent unique

approaches and our primary task was to identify the
common concepts decorated by these different
terminologies. The developer’s intuition and optimism
was based on the fact that both technologies have a long
history of successful projects in neighboring domains.
Moreover, the overall goal was more practical:
understanding how the DDS data-centric model can
extend the CA interface for developing high-level
applications. As a result, an initial scope of the EPICS-
DDS middleware was narrowed to the following three
DDS concepts expressed in the CA terms:

• Topic: collection of values (or other record fields)
belonging to the different PV instances of the same
record type.

• Data Reader: maintainer of the CA channels for
getting data from the collection of PV fields
associated with the Data Reader’s topic.

• Data Writer: maintainer of the CA channels for
putting data to the collection of the PV fields
associated with the Data Writer’s topic.

These suggested associations explicitly identify the core
architecture of EPICS-DDS setting the DDS Typed
Global Data Space onto the EPICS I/O Controllers and
considering the DDS participants as wrappers of the CA
clients. Starting from this point, we consistently and
incrementally continued to tackle different features of the
CA interface towards the three-tier high level application
environment. The present list of these features is
illustrated by the following EPICS-DDS examples:

caMonitorApp: classical asynchronous example from the
EPICS Application Developer’s Guide [4] demonstrating
the implementation of the DDS DataReaderListener based
on the CA callback function. According to the DDS
specification, DataReaderListener has several methods
which can be selected with a corresponding status mask.
This mask-based approach provides direct mapping from
the DDS object-oriented model to a list of CA C-
functions. Following the CA approach, all DDS
DataReaderListener’s methods can be divided into two
uneven categories. The first category includes only one
method on_data_available dealing with data acquisition
and implemented by the CA ca_create_subscription. The
second category is associated with monitoring of QoS
policies. The current EPICS-DDS version controls the

liveliness of DataWriter’s with the CA function
ca_add_exception_event.

caExampleApp: extension of another classical example
from EPICS Application Developer’s Guide[4],
demonstrating the DDS synchronous interface and a
carcass of the EPICS-DDS middle layer server. In DDS,
synchronous access is represented by a WaitSet which can
attach a set of ReadCondition’s and waits for them to
return. Each ReadCondition is associated with an
individual DataReader. From this perspective, the DDS
synchronous model directly corresponds to one of the
major CA communication approaches allowing the
accumulation of numerous requests into a single message.
The original caExample was implemented as a client
program. In our version, we added an IOC server
extended with the application object running in the
dedicated thread. This example demonstrates the most
straightforward approach [5] for building the middle layer
servers in the EPICS-DDS environment.

caTimeApp: implementation of the corresponding CA
command line utility for benchmarking the CA-based
communication. The benchmark measures the latency of
receiving sequences of values. This application also
highlights the limitation of the present DDS specification
treating the sequences with different sizes as the different
data types. The next application shows how this problem
can be resolved with the PvData approach introduced in
the EPICS 4 version.

PvDataApp: PvData-based implementation of the
caTimeApp example. PvData is a hierarchical tree of
containers designed after the Composite pattern. The leaf
nodes are represented by scalars and arrays of the
primitive data types, such as integer, float, etc. The
composite nodes serve to accomodate nested structures.
As a result, the PvData approach provides a flexible
mechanism for building the PV-specific fixed data types
in a run-time environment. Particularly, PvDataApp
prototypes the PVFloatArray container where the number
of elements is defined after creating the CA channel. This
approach addresses the recent OMG request of proposals
“Extensible and Dynamic Topic Types for DDS” and we
expect to consider and apply it to the different user-
specific types of accelerator applications.

TwissApp: example which illustrates the extension of the
EPICS 3 data types with the application-specific data
structures, e.g. Twiss. The approach is based on the
EPICS waveform record hosting an array of characters
which can be serialized/deserialized in the EPICS-DDS
layer. The serialization algorithm is encapsulated in the
ByteBufferCAC class designed after the corresponding
class from the Java NIO package. Currently, a byte buffer
is created from values of primitive types (and their
compositions) by directly copying their memory blocks
using memcpy. There are also several portable
approaches, for example OMG Common Data
Representation (CDR) or Google’s Protocol Buffers. The

FR5REP002 Proceedings of PAC09, Vancouver, BC, Canada

4774

Controls and Operations

T04 - Control Systems

final variant however will be determined after finalizing
the EPICS 4 protocol.

BuiltinTopicApp: implementation of one of the built-in
topic data structures with information about the DDS
participants. This example identifies a direction in the
development of the EPICS-DDS full-scale directory
service based on its own framework without use of the
additional communication systems, such as CORBA.
 Moreover, the approach allows to automatically inherit
the distributed and publish/subscribe features of the DDS
infrastructure.

We plan to further extend this list of features with other
DDS elements, such as QoS, content filtered topic, etc.
However, the present EPICS-DDS version already creates
a necessary basis for starting the development of the
multi-tier high level application environment.

CONCLUDING REMARKS
This paper presents a new extension to EPICS,

approaching the Data Distributed Service (DDS) interface
based on the Channel Access protocol. The integration of
these two technologies addresses five major tasks. First,
DDS brings an industrial standard interface to the
accelerator online environment allowing to decouple a
variety of high-level applications and toolkits from the
underlying low-level control systems, such as EPICS,
TINE, TANGO, and others. Second, the DDS topic-
oriented approach elevates the EPICS Channel Access
protocol to the high-level applications replacing the
additional RPC-like communication interfaces. Third, the
DDS specification introduces some guidance for
extending the EPICS infrastructure with the relevant set
of quality of service. Fourth, DDS creates a basis of
Service-Oriented Architecture (SOA) promoting
decoupling of the service interfaces from their project-
oriented implementations. In context of the high-level
application environment, it means flexibility in selecting
and connecting the most appropriate modeling algorithms
and programs. Finally, the DDS technology extends the
EPICS run-time environment with the relational model
creating a platform for adding relational queries and
integration of full-scale Data Stream Management
Systems (DSMS) for data stream processing and
archiving. Moreover, adherence to the relational approach
facilitates the design of consistent run-time interfaces to

the complex hierarchical structures according to the well-
established software engineering techniques, such as
object-relational mapping.

From the other side, EPICS represents de facto standard
open-source software with a multi-year history of
numerous successful projects. As a result, it creates a
solid basis for developing the open source implementation
of the DDS specification. Moreover, the special features
of the Channel Access approach provide the advantageous
means for solving the complex DDS issues, for example
server-based event filtering. The new PVData concept
from the coming EPICS 4 version introduces another
important idea addressing the recent OMG RFP:
Extensible and Dynamic Topic Types for DDS.

The positive experience gained from this project
encourages us to further explore and extend the EPICS-
DDS middleware in the development of the full-scale
high-level accelerator application environment.

ACKNOWLEDGEMENTS
The EPICS-DDS design has been shaped and

consolidated from the numerous discussions and valuable
inputs of members of Control and Accelerator Physics
groups of the NSLS-II project. We would like also to
thank B. Dalesio and S. Stoller for their support and S.
Shasharina and N.Wang from the Tech-X Corporation for
their contributions.

REFERENCES
[1] L. Dalesio et al., “The Experimental Physics and Industrial

Control System Architecture,” ICALEPCS’93, Berlin,
Germany, October 1993, http://www.aps.anl.gov/epics/

[2] OMG, “Data Distribution Service for Real-time Systems,
Version 1.2,” formal/07-01-01,

 http://www.omg.org/cgi-bin/doc?formal/07-01-01
[3] A. Corsaro, “Advanced DDS Tutorial,” Workshop on

Distributed Object Computing for Real-Time and
Embedded Systems, July 2008, Washington, DC, USA

[4] M.Kraimer et al, “EPICS Application Developer’s Guide,”
January 2009.

[5] J.Hill, EPICS Tech-Talk.

Proceedings of PAC09, Vancouver, BC, Canada FR5REP002

Controls and Operations

T04 - Control Systems 4775

