
HIGH-LEVEL CONTROLS UPGRADE AT THE ALS*

G. Portmann, H. Nishimura, C. Timossi, C. Ikami, M. Urashka, M. Beaudrow, H. Mahic
LBNL, Berkeley, CA 94720, U.S.A.

Abstract
The Advance Light Source (ALS) is in the process of

upgrading the high-level controls software. This welcome
upgrade is driven by the need for a low-level controls
hardware upgrade. The risk of a failure in some of the
aging controls hardware is reaching a critical level. The
dilemma is that replacing the low-level hardware will
break some important control room applications. An
effort has been started to replace all the high-level
software in a way that is compatible with an incremental
low-level hardware replacement. As will be presented in
this paper, the plan involves combining three very
different programming methods: C#, Matlab, and EPICS
tools.

INTRODUCTION
The ALS started operations in 1993. A number of high-

level software and hardware upgrades and improvements
have been made since then, primarily to the storage ring
and booster to be compatible with EPICS, but a full
upgrade is long overdue. In fact, from the electron gun to
the booster ring there have been almost zero changes to
the system since it was built. The motivation for the
upgrade is not only to take advantage of new technology
to improve operator control of the accelerator, but to pave
the way for new low-level controls hardware. The ALS is
in a precarious situation where much of the original
controls hardware is not easily repairable or replaceable.
Since the original high-level controls applications are not
based on a network API, like channel access, but rather on
synchronous calls across a direct physical link, replacing
the high-level software or low-level controls hardware is
very difficult – the applications are too closely tied to the
underlying hardware. As presented here, a plan is in place
to change all the high-level software as well as some low-
level hardware to facilitate the use of channel access.

Attached to the high-level software upgrade is a plan
for all new workstations, new OS, and a new ergonomic
design. Logistically, replacing the high-level controls is
quite difficult. Not only does it involve the writing and
testing of new applications, there is a large operator
training and socialization component to the project.

GENERAL PLAN
The ALS has used a combination of Windows, Linux,

and Solaris for some time. This diversity creates some
difficulty with computer support and some practical
problems for the operations staff who have to know
something about all three operating systems. The ALS
has enjoyed a rich history of developers experimenting

with many different computer languages. Although
creative and historically interesting, it has reached a point
where consolidation is necessary. Recognizing the proper
balance between fostering creative solutions and
restricting application design and language selection is
critical for a healthy control room.

The software plan for the ALS is to restrict high-level
applications to two languages, C# and Matlab, and one
EPICS display manager, EDM. These methods were
chosen to provide a relatively wide variety of software
tools to developers and it’s well aligned with the expertise
of the present ALS staff. The learning curve for each of
these tools is drastically different – typically months,
weeks, hours for C#, Matlab, and EDM respectively. The
type of problem often addressed by each tool is very
different.

Another of the design goals is to decrease the number
of operating systems in the operator console area. Since
the ALS has significant experience with the Windows OS
for operator consoles all consoles will use the latest
version of Windows Vista. The .NET based applications
will be developed on Vista. Portability to Linux/Mono
has been shown to work, but will likely not be used. All
EPICS tools are run on Linux and displayed to the
console using X-Manager.

The new PC hardware will be a substantial upgrade
from the present Windows 2000 machines. The starting
configuration will be seven operator consoles (64-bit
quad-core CPUs) with 30” LCD monitors, 2 Windows
2008 Servers, 2 development consoles. Much more
attention to ergonomics will be given this time around.
Fig. 1 shows a new fully adjustable (table, monitor, and
chair height) duel console table. The old system is
mounted in a fixed rack that makes upgrades difficult.
For instance, the monitor size was limited to 19”. Instead
of a home-made rack mounted knob panel, an inexpensive
Griffin knob will be used.

Figure 1: Console unit.

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC02-05CH11231

Proceedings of PAC09, Vancouver, BC, Canada FR5REP016

Controls and Operations

T04 - Control Systems 4805

NEW SUPPORT LIBRARIES
A number of support libraries were needed for this

effort. Some libraries were developed in order to
maintain a connection to the old ALS control system.
Although challenging to do, these libraries are likely only
of interest locally hence will not be discussed here. For
the Matlab-to-CA link, the LabCA, [5], is being used.
The main library developed at the ALS which may be of
interest to the general community is SCA.NET.

SCA.NET
SCA.NET is a .NET class-library assembly meant for

use by .NET applications needing CA client functionality,
[1]. An assembly has the same file extensions as a
windows executable, either exe or dll, but has a different
file format that includes meta-data allowing it to be self-
describing.

The goals for SCA.NET are somewhat conflicting:
• Provide a thin layer around the CA library which

has proven over many years to be a robust and high
performance network layer for accelerator data
transport.

• Hide some of the details of the CA interface in a
class that is more intuitive to a .NET application
builder than the CA API.

The design utilizes two classes.
Als.Epics.ChannelAccess is a static class that contains all
the direct .NET to Ca.dll mappings using the Platform
Invoke (P/Invoke) interface provided by .NET
System.Runtime.InteropServices. This class is used by
Als.Epics.SimpleChannelAccces exposes a class more
suitable for .NET applications.

HIGH-LEVEL SOFTWARE
The effort to replace all the high-level applications

started in 2008. As mentioned, this effort combines three
very different programming methods: C#, Matlab, and
EPICS tools. However, the backbone of the high-level
controls effort is C# on the .NET framework on Windows
Vista.

The plan is to start at the electron gun and prototype the
software tools needed for the entire machine. The first
phase of a high-level controls upgrade is nearing
completion. It is now possible to tune the accelerator
from the electron gun, through the LINAC, to the booster
injection point.

.NET & C# Framework
Details on the using the .NET Framework for high-level

application development can be found in [1, 2, 4, 6]. Fig.
2 shows screen shot of a number of the C# applications.
Considerable effort has been put into a transport line
tuning GUI supporting knob controls (both a software and
hardware knob).

Figure 2: Some C# applications including the gun-to-
booster tuning application.

The plan is to create a tool similar in concept to the

EPICS display managers using C#, .NET, and Expression
Blend 2. By doing so, the application GUI designer will
not need C# knowledge to create applications. However,
if complicated logic is required in the GUI, then the
power of the C# language can easily be incorporated, [4].

MATLAB
Matlab has been heavily used at the ALS almost from

the beginning. It is an easy language to learn with a large
number of numerical receipts readily available. Matlab is
commonly found in accelerator control rooms. The ALS
uses Matlab for many things including topoff control,
save/restore, magnet conditioning, energy ramping, orbit
control, tune and coupling compensation of insertion
devices, as well as a scripting language for automating
physics experiments. Fig. 3 shows the main Matlab GUI
for controlling the ALS storage ring and Fig. 4 shows a
general orbit correction GUI that can be used at a number
of accelerators.

The MML software package (Matlab Middle Layer),
[3], is extensively used. Although starting as a
“middlelayer,” this software has expanded into a much
larger analysis and control package for accelerators.
Since the middle layer title is no longer appropriate the
MML acronym has replaced the name. The MML
toolbox, AT simulation toolbox, and LOCO application
[10] (all written in Matlab) have become a standard tool
for optimizing light sources. The plan is to expand the
transport line and linac tuning capabilities of the MML
toolbox with this high-level controls upgrade.

EPICS Display Manager
The EDM EPICS display manager provided by the

EPICS community, [9], is used for a number of
applications. The simplicity of use is quite appealing.

FR5REP016 Proceedings of PAC09, Vancouver, BC, Canada

4806

Controls and Operations

T04 - Control Systems

Figure 3: Main Matlab GUI for Storage Ring Control

Figure 4: Orbit Control GUI in Matlab

SOFTWARE TOOLS

Graphing
There are many graphing tools available as freeware or

for purchase, however, it was difficult to find the one that
met the ALS operations needs. A C# application is under
development to both mine the EPICS Channel Archiver
and continually update as new data arrives. This has the
advantages of not having to make CA connections and the
graphs can be fully populated on start.

Version Control
Although CVS is still the main version control system

at use in the ALS, for the upgrade project, we are using
Subversion. The primary SVN client tool for Windows is
TortoiseSVN, [8], which is implemented as a file explorer
extension.

AKNOWLEDGEMENTS
The authors thank A. Biocca and D. Robin for their
support. We appreciate the patient cooperation of machine
operators group for using new programs and giving us
constructive feedback.

REFERENCES
[1] C. Timossi, H. Nishimura, “A .NET Assembly for

EPICS Simple Channel Access,” PCaPAC 2008,
Ljubljana.

[2] H. Nishimura et. al., “Re-writing the ALS Control
Room Software in C#”, PCaPAC 2008, Ljubljana.

[3] G. Portmann, J. Corbett, A. Terebilo, “An Accelerator
Control Middle Layer Using Matlab,” 2005 PAC, TN.

[4] H. Nishimura et. al., “ALS Control System Upgrade
in C#,” PAC 2009, Vancouver.

[5] T. Straumann, http://www.slac.stanford.edu/grp/
cd/soft/epics/extensions/labca/manual/

[6] H. Nishimura and C. A. Timossi, “Control Room
Application Development Using .NET”, PCAPAC
2005.

[7] H. Nishimura and C. Timossi, “Mono for Cross-
Platform Control System Environment”, PCAPAC
2006.

[8] http://tortoisesvn.tigris.org/
[9] J. Sinclair, http://ics-web.sns.ornl.gov/kasemir/

train_2006/ 1_4_EdmTraining.pdf.
[10] J. Safranek, G. Portmann, A. Terebilo, C. Steier,

“Matlab-Based LOCO,” EPAC, Paris, June 2002.

Proceedings of PAC09, Vancouver, BC, Canada FR5REP016

Controls and Operations

T04 - Control Systems 4807

