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Abstract

In the present analysis we study the self consistent prop-
agation of intense laser pulses in a cold relativistic ideal-
fluid underdense plasma, with particular interest in how
the envelope dynamics is affected by the plasma frequency.
Analysis of the linear system associated with the chosen
model shows the existence of thresholds that can lead prop-
agating pulses to distinct modulational instabilities, accord-
ing to the relation between its transversal wave vector and
the plasma frequency.

INTRODUCTION

Intense laser pulses propagating in a plasma can cre-
ate (through action of the nonlinear ponderomotive force)
wakefields that, under appropriate conditions, will trap
electrons and provide them a high gradient of acceleration.
In last years much progress has been done in this area, from
Tajima & Dawson [1] computational simulations to recent
Leemans et al. [2] experiments. Stability analysis of laser-
plasma systems plays an important role to have a deeper
understanding about the processes involved with the cre-
ation and destruction of these wakefields.

One-dimensional models used previously [3, 4, 5] for
analytical and computational works were studied from the
perspective of nonlinear dynamics [6, 7], and our purpose
is to extend this perspective to models with transversal and
longitudinal dynamics. We start from a model used by
Mora & Antonsen [9], using it to obtain a pair of coupled
equations for two perturbed quantities: the plasma density
n̄ and the transversal vector potential amplitude A⊥. From
these equations it is possible to deduce a dispersion rela-
tion for the propagation of waves in the plasma. Solutions
of dispersion relation show the existence of thresholds for
modulational instabilities, which depends on the relation
between K2

⊥ and ω2
p.

MODEL

Considering the self consistent propagation of laser
pulses in a cold relativistic plasma, we assume that the elec-
trons interact with the electric field in two separated ways:
first, jittering due to the high frequency laser field and, sec-
ond, creating a nonlinear wake following the laser pulse as
a response to its low frequency ponderomotive potential.
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This assumption is reasonable since the plasma is under-
dense; the laser frequency is much greater than all the other
characteristic times in the system. That is, ω̄p � ω0 and
rL � 1/k0, where ω̄p ≡ (4πq2n0/m)1/2 is the plasma
frequency based in the background density n 0, the charge
q and the mass m of the electrons.

Following the model proposed by Mora & Antonsen [9]
we start from a first-order linearized equation of motion,
which considers the combined electrostatic and pondero-
motive potentials (associated to the electric wakefield and
to the jitter of electrons in the laser field respectively),

∂

∂t
(γ̄mv̄) = −q∇φ̄ − q2

2γ̄mc2
∇

∣
∣Ã⊥

∣
∣
2
, (1)

where tilde and overbar are used to identify rapidly and
slowly varying components respectively; B̄ field was ne-
glected as it has been shown [8] that it is of higher order in
the small parameter ω̄p/ck0, to be used in the subsequent
analyses. Radiation is written in terms of the circularly po-
larized high frequency vector potential Â⊥ as an envelope
modulating a plane wave travelling at the speed of light,

Ã⊥ = Â⊥(z,x⊥, t)exp[ik0ζ] + c.c , (2)

where ζ = z − ct and k0 is the wave number of the
plan wave. Expanding the envelope complex amplitude as
Â⊥ = A0 + A⊥ (with A⊥ � A0 = constant) we can
calculate γ̄ with the lowest order of this expansion,

γ̄ =
[

1 +
q2A2

0

m2c4

]1/2

, (3)

and rewrite the term involving the vector potential in Eq.
(1) as

|Ã⊥|
2

= 2|Â⊥|2 = 2A0(A⊥ + A∗
⊥) . (4)

Finally, expanding n = n0 + n̄ in the continuity equation
(with n̄ � n0 = constant) and using Poisson equation
∇2φ̄ = −4πqn̄ we obtain the following equation for the
density:

(

1 +
γ̄

ω̄2
p

∂2

∂t2

)

n̄ =
A0

4πmγ̄c2
∇2(A⊥ + A∗

⊥) . (5)

For the envelope, expanding A⊥ n and neglecting higher
order terms we have

(
2ik0

c

∂

∂t
+ ∇2

⊥

)

A⊥ =
ω̄2

p

n0γ̄c2
(n0A⊥ + n̄A0) . (6)
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Writing the relevant complex quantities as A⊥ =
|A⊥|exp[K̄ · r− Ω̄t] and n̄ = |n̄|exp[K̄ · r− Ω̄t], the sys-
tem of Eqs. (5) and (6) can be used to obtain the dispersion
relation for waves (laser pulses, wakefields) propagating in
the plasma:

Ω2 = ω2
p + 4ω2

pα
2K2

(

K2
⊥ − ω2

p

)

[

4Ω2 − (K2
⊥ + ω2

p)2
] , (7)

where

Ω2 ≡ Ω̄2

c2k2
0

, ω2
p ≡

ω̄2
p

γ̄c2k2
0

K ≡ K̄
k0

, α2 ≡ q2A2
0

γ̄2m2c4
.

From Eq. (7),

Ω = ± 1
2
√

2

√

δr ±
√

δ2
r − δi , (8)

δr ≡
[

4ω2
p + (K2

⊥ + ω2
p)2

]

, (9)

δi ≡ 16ω2
p

[

(K2
⊥ + ω2

p)2 − 4α2K2
]

. (10)

STABILITY ANALYSIS

As shown in Eq. (8), the solution to the obtained dis-
persion relation, pulses will propagate in the plasma with
a frequency Ω, which under determined circumstances can
be purely real (and thus there is propagation without in-
stabilities), have real and imaginary components (there is
propagation together with instabilities) or be purely imag-
inary (there are instabilities and propagation is not possi-
ble). In order to study such instabilities, it is necessary
to analyze the regimes where the frequency is a complex
quantity. Since that δr, δi ∈ R, this can be done determin-
ing when it is possible to have a negative quantity in any of
the square roots in the Ω solutions.

Particularly for the solution of Eq. (8) with the minus
signal inside the square root, the following condition deter-
mines if Ω is a real or a complex quantity:

Ω− ∼
√

δr −
√

δ2
r − δi ∈ C ⇒ δi < 0 . (11)

Another condition, valid for all solutions of Eq. (8), can
lead Ω to be imaginary:

Ω ∼
√

δr ±
√

δ2
r − δi ∈ C ⇒ δ2

r < δi . (12)

Solving Eqs. (11) and (12) as functions of α2 we can es-
tablish thresholds (critical values of this parameter) which
separate regular from unstable dynamics:

α2
c1 ≡

(

K2
⊥ + ω2

p

)2

4
(

K2
‖ + K2

⊥
)(

K2
⊥ − ω2

p

) , (13)

α2
c2 ≡ −

[(

K2
⊥ + ω2

p

)2 − 4ω2
p

]2

64ω2
p

(

K2
‖ + K2

⊥
)(

K2
⊥ − ω2

p

) . (14)

It is worth to observe that the signals of Eqs. (13) and (14),
which are always opposites, are determined by the differ-
ence between the squared transversal wave number and the
squared plasma frequency:

K2
⊥ > ω2

p ⇒ α2
c1 > 0 , α2

c2 < 0 ,

K2
⊥ < ω2

p ⇒ α2
c1 < 0 , α2

c2 > 0 .

Figure (1) shows α2
c1 and α2

c2 behaviors as functions of
K2

⊥/ω2
p for a fixed value of ω2

p.
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Figure 1: thresholds α2
c1 and α2

c2, plotted as functions of
the ratio K2

⊥/ω2
p for ω2

p = 0.10; if K2
⊥/ω2

p < 1 , α2
c1 is

negative and α2
c2 is positive; if K2

⊥/ω2
p > 1, signals are the

opposite.

Definition of α2 ≡ q2A2
0/γ̄2m2c4 shows that this pa-

rameter is related with A0, the term of lowest order of the
vector potential amplitude (which is constant and real), and
other real squared quantities. For this reason, negative val-
ues of α2 have no physical meaning.

As α ∈ R ⇒ α2 ≥ 0, it is possible to see that, for
given values of ω2

p and K2
⊥, regimes with K2

⊥ > ω2
p have

a threshold like α2
c1, with an absolute instability when it is

crossed. Figure (2), plotted for K 2
⊥ = 0.2 and ω2

p = 0.1,
shows the real and imaginary parts of Ω as functions of α2

(α2
c1 ≈ 0.750).

Regimes with K2
⊥ > ω2

p are illustrated in Figure (3),
plotted for K2

⊥ = 0.1 and ω2
p = 0.2 (α2

c1 ≈ 1.969). Be-
fore α2

c2, the frequency Ω is real and there are two stable
modulational modes that couple at α2

c2; After the threshold,
Ω is complex and the propagation of waves in the plasma
becames unstable.

CONCLUSION

In this work we have studied the self consistent propa-
gation of intense laser pulses in a cold relativistic plasma
using a model that contemplates longitudinal and transver-
sal dynamics.

Solving a set of two coupled equations we were able to
find a dispersion relation and to obtain the possible solu-
tions for the frequency Ω. These solutions allowed us to

Proceedings of PAC09, Vancouver, BC, Canada FR5RFP019

Advanced Concepts

A13 - New Acceleration Techniques 4571



verify under which conditions Im(Ω) = 0 and to find and
express the existing thresholds for modulational instabili-
ties, α2

c1 and α2
c2, as functions of the transversal wave vec-

tor of the propagating pulse and the plasma frequency.
We have analyzed the behavior of the thresholds as func-

tions of the ratio K2
⊥/ω2

p, which have opposite signals and
that only positive values have physical meaning.

For regimes with K2
⊥ > ω2

p, the threshold α2
c1 sepa-

rates regular dynamics from an absolute instability: the real
component of Ω vanishes as α2 goes towards its critical
value and, after that, Ω has only imaginary components; at
this point, there is no propagation at all.

For regimes with K2
⊥ < ω2

p, the instability possibly is
a convective one: before the threshold, Ω has two real
branches that couple when α2

c2 is reached; after that, Ω
has both (real and imaginary) components and instability
is present.
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Figure 2: for K2
⊥ > ω2

p the frequency Ω starts as a real
quantity that vanishes when α2 → α2

c1; beyond this thresh-
old waves cannot propagate: there are only unstable modes
that keep growing as α2 > α2

c1.
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Figure 3: for K2
⊥ < ω2

p the frequency Ω has two stable
branches that couple when α2

c2 is reached. Beyond this
threshold, which is the onset of unstable mode, Ω is com-
plex and instability growth can be measured by its imagi-
nary component.
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