FOUR REGIMES OF THE IFR ION HOSE INSTABILITY*

R. A. Bosch ${ }^{\#}$, Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Dr., Stoughton, WI 53589, U.S.A.

Abstract

An electron beam focused by an ion channel without a magnetic field, in the so-called ion focus regime (IFR), may be disrupted by the transverse ion hose instability. We describe the growth in four regimes.

INTRODUCTION

Propagation of an electron beam focused by a preformed ion channel may be disrupted by the ion hose instability [1-3]. In the rigid-beam model [1]

$$
\begin{equation*}
d^{2} b / d t^{2}=-\omega_{e}^{2}(b-c), \quad d^{2} c / d t^{2}=-\omega_{i}^{2}(c-b) \tag{1}
\end{equation*}
$$

where $b(z, t)$ is the beam displacement, $c(z, t)$ is the channel displacement, z is axial location, t is time, $d b / d t=\partial b / \partial t+v \partial b / \partial z$ and $d c / d t=\partial c / \partial t$ where v is the beam velocity, while ω_{e} and ω_{i} are the electron betatron frequency and the ion bounce frequency.

Equation (1) describes an absolute instability, while the ion hose instability is actually a convective instability where a growing disturbance moves downstream and towards the tail of the beam [2]. This may be remedied by considering distributions of betatron and bounce frequencies [2]. We model Cauchy (also called Lorentzian) distributions with half-widths α_{e} and α_{i}, whose frequency spreads give exponential decoherence of centroid oscillations approximated by linear damping [4]

$$
\begin{align*}
& d^{2} b / d t^{2}=-\omega_{e}^{2}(b-c)-2 \alpha_{e} d b / d t \\
& d^{2} c / d t^{2}=-\omega_{i}^{2}(c-b)-2 \alpha_{i} d c / d t \tag{2}
\end{align*}
$$

Equation (2) also describes the electron hose instability of an electron beam that expels ions from uniform plasma [5, 6], the beam breakup (BBU) instability when the parameter $s_{1}=1$ [7], and the $e-p$ instability of a proton beam in a channel of electrons [8]. We model realistic damping with $\alpha_{e} / \omega_{e}=\alpha_{i} / \omega_{i}=0.1$ [8].

DISPERSION RELATION

A disturbance that is dominated by a single frequency is described by the dispersion relation. For the ansatz $b(z, t)=b_{0} e^{i(k z-\omega t)}, c(z, t)=c_{0} e^{i(k z-\omega t)}$, we can solve Eq. (2) for $\Omega \equiv \omega-v k$ as a function of ω, or vice versa

$$
\begin{align*}
& \Omega=-i \alpha_{e} \pm \omega_{e}\left(1-\frac{\alpha_{e}^{2}}{\omega_{e}^{2}}+\frac{\omega_{i}^{2}}{\omega^{2}-\omega_{i}^{2}+2 i \omega \alpha_{i}}\right)^{1 / 2} \\
& \omega=-i \alpha_{i} \pm \omega_{i}\left(1-\frac{\alpha_{i}^{2}}{\omega_{i}^{2}}+\frac{\omega_{e}^{2}}{\Omega^{2}-\omega_{e}^{2}+2 i \Omega \alpha_{e}}\right)^{1 / 2} \tag{3}
\end{align*}
$$

[^0]Beam Dynamics and Electromagnetic Fields

For a growing disturbance dominated by $\omega=\omega_{i}$, solving for Ω gives the spatial growth rate and group velocity

$$
\begin{align*}
& -\operatorname{Im}(k) \approx \frac{0.5 \omega_{e} \omega_{i}^{1 / 2}}{v \alpha_{i}^{1 / 2}}-\frac{\alpha_{e}}{v} \\
& v_{g} \approx\left[\frac{d \operatorname{Re}(k)}{d \operatorname{Re}(\omega)}\right]^{-1} \approx \frac{v}{1+0.25 \omega_{e} \omega_{i}^{1 / 2} / \alpha_{i}^{3 / 2}} \tag{4}
\end{align*}
$$

For a growing disturbance dominated by $\Omega=\omega_{e}$, solving for ω gives the temporal growth rate and group velocity

$$
\begin{align*}
& \operatorname{Im}(\omega) \approx \frac{0.5 \omega_{i} \omega_{e}^{1 / 2}}{\alpha_{e}^{1 / 2}}-\alpha_{i} \tag{5}\\
& v_{g} \approx \frac{d \operatorname{Re}(\omega)}{d \operatorname{Re}(k)}=\frac{d \operatorname{Re}(\omega) / d \Omega}{d \operatorname{Re}(k) / d \Omega} \approx \frac{v}{1+\alpha_{e}^{3 / 2} /\left(0.25 \omega_{i} \omega_{e}^{1 / 2}\right)}
\end{align*}
$$

IMPULSE RESPONSE

In terms of betatron phase $Z \equiv \omega_{e} z / v$ and ion bounce phase $\xi \equiv \omega_{i}(t-z / v)$, Eq. (2) with an impulse becomes

$$
\begin{align*}
& \partial^{2} b / \partial Z^{2}=-(b-c)-2 A_{e} \partial b / \partial Z+\delta(Z) \delta(\xi) \\
& \partial^{2} c / \partial \xi^{2}=-(c-b)-2 A_{i} \partial c / \partial \xi \tag{6}
\end{align*}
$$

where $A_{e} \equiv \alpha_{e} / \omega_{e}$ and $A_{i} \equiv \alpha_{i} / \omega_{i}$. For a beam whose head is at $\xi=0$ that enters an ion channel at $Z=0$, $b(Z, \xi)$ is the response to an impulsive force applied to the head of the beam at the entrance of the channel. For underdamped electron and ion oscillations with $A_{e}, A_{i}<1$, the solution to Eq. (6) for an immobile ion channel with $c(Z, \xi) \equiv 0$ is [9]

$$
\begin{equation*}
b_{0}(Z, \xi)=\delta(\xi) e^{-A_{e} Z} \sin \left(Z \sqrt{1-A_{e}^{2}}\right) / \sqrt{1-A_{e}^{2}} \tag{7}
\end{equation*}
$$

For mobile ions, the solution is the sum of Eq. (7) and [9]

$$
\begin{align*}
& \Delta b(Z, \xi)=e^{-A_{e} Z} e^{-A_{i} \xi} \sum_{k=1}^{\infty} \frac{\pi}{k!(k-1)!}\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{k-1 / 2} \tag{8}\\
& \times J_{k-1 / 2}\left(\xi \sqrt{1-A_{i}^{2}}\right)\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{k+1 / 2} J_{k+1 / 2}\left(Z \sqrt{1-A_{e}^{2}}\right) .
\end{align*}
$$

A similar formula describes the mobile ions [9]. For a pulse length of $\xi / 2 \pi$ ion bounce periods, $\Delta b(Z, \xi)$ is the tail offset after propagating $Z / 2 \pi$ betatron wavelengths.

To approximate Eq. (8), we use the small and large argument approximations: $J_{v}(x) \approx[\Gamma(v+1)]^{-1}(x / 2)^{v}$ for $x \ll v, J_{v}(x) \approx(2 / \pi x)^{1 / 2} \cos (x-v \pi / 2-\pi / 4)$ for $x \gg v$ [10], and an approximation of the gamma function: $\Gamma(n+1) \approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}$ for $n \gg 1$.

Short Propagation Distance of a Short Pulse

For $Z, \xi \ll 1$, the sum in Eq. (8) is dominated by the first term. Applying the small-argument approximation to the Bessel functions gives the non-oscillating result

$$
\begin{equation*}
\Delta b(Z, \xi) \approx \xi Z^{3} / 6 \tag{9}
\end{equation*}
$$

Short Pulse

For $\xi \ll Z$, the pulse length (measured in ion bounce phase) is much shorter than the propagation distance (measured in electron betatron phase). For $\xi^{2 / 3} Z^{1 / 3} \gg 1$, Eq. (8) is dominated by terms with $\xi \ll k \ll Z$, where the small-argument approximation applies to $J_{k-1 / 2}\left(\xi \sqrt{1-A_{i}^{2}}\right)$ and the large-argument approximation applies to $J_{k+1 / 2}\left(Z \sqrt{1-A_{e}^{2}}\right)$. Applying these approximations to all of the terms and using complex notation where the real part gives the physical disturbance, we have

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{\sqrt{\pi} e^{-A_{e} Z} e^{-A_{i} \xi} e^{i Z \sqrt{1-A_{e}^{2}}}}{\sqrt{1-A_{e}^{2}}} \tag{10}\\
& \times \sum_{k=1}^{\infty} \frac{1}{k!(k-1)!\Gamma(k+1 / 2)}\left(\frac{\xi}{2}\right)^{2 k-1}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{k} e^{-i \frac{\pi}{2}(k+1)} .
\end{align*}
$$

Using $k!\approx \sqrt{2 \pi} k^{k+1 / 2} e^{-k},(k-1)!=k!/ k \approx \sqrt{2 \pi} k^{k-1 / 2} e^{-k}$ and $\Gamma(k+1 / 2) \approx \sqrt{2 \pi} k^{k} e^{-k}$ gives $k!(k-1)!\Gamma(k+1 / 2)$ $\approx\left(2 \pi / 3^{3 k}\right) \Gamma(3 k+1 / 2)$, which yields
$\Delta b(Z, \xi) \approx \frac{\sqrt{3} e^{-A_{e} Z} e^{-A_{i} \xi} e^{i Z \sqrt{1-A_{e}^{2}}}}{2 \sqrt{\pi} \sqrt{1-A_{e}^{2}}}\left(\frac{\xi}{2}\right)^{-2 / 3}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 6}$
$\times e^{-i \frac{7 \pi}{12}} \sum_{k=1}^{\infty} \frac{1}{\Gamma(3 k+1 / 2)}\left[3\left(\frac{\xi}{2}\right)^{2 / 3}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 3} e^{-i \frac{\pi}{6}}\right]^{3 k-1 / 2}$.
The sum in Eq. (11) approximates every third term of the Taylor series for an exponential, so that

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{e^{-A_{e} Z} e^{-A_{i} \xi}}{2 \sqrt{3 \pi} \sqrt{1-A_{e}^{2}}}\left(\frac{\xi}{2}\right)^{-2 / 3}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 6} \tag{12}\\
& \times e^{i\left(Z \sqrt{1-A_{e}^{2}}-G / \sqrt{3}-7 \pi / 12\right)} e^{G}
\end{align*}
$$

where for a short pulse

$$
\begin{equation*}
G=(3 \sqrt{3} / 4) \xi^{2 / 3}\left(Z / \sqrt{1-A_{e}^{2}}\right)^{1 / 3} \tag{13}
\end{equation*}
$$

is the exponential growth factor. This factor has been previously obtained when damping is neglected [2, 3], and corresponds to BBU growth type C of Ref. [7]. The additional exponential factor $-A_{e} z-A_{i} \xi$ gives damping.
For a given value of ξ (a slice of the beam), the envelope $|\Delta b(Z, \xi)|$ peaks where $Z \approx 0.285 \xi / A_{e}^{3 / 2}$. The peak's velocity and temporal growth rate are $\nu /\left[1+\alpha_{e}^{3 / 2} /\left(0.285 \omega_{i} \omega_{e}^{1 / 2}\right)\right]$ and $0.57 \omega_{i} \omega_{e}^{1 / 2} \alpha_{e}^{-1 / 2}-\alpha_{i}$,

Figure 1: The impulse response function and the shortpulse approximation of Eq. (12), valid for $\xi \ll Z$.
(a) $\xi=2 \pi=6.28$.
(b) $Z=20 \pi=62.8$.
approximately given by Eq. (5) for $\Omega=\omega_{e}$.
Figure 1 displays the oscillating impulse response for a short pulse and its approximation by Eq. (12).

Long Pulse

For $Z \ll \xi$, the pulse length (measured in ion bounce phase) is much longer than the propagation distance (measured in betatron phase). For $Z^{2 / 3} \xi^{1 / 3} \gg 1$, Eq. (8) is dominated by terms with $Z \ll k \ll \xi$, where the largeand small-argument approximations apply to $J_{k-1 / 2}\left(\xi \sqrt{1-A_{i}^{2}}\right)$ and $J_{k+1 / 2}\left(Z \sqrt{1-A_{e}^{2}}\right)$, respectively. Approximating all terms, using complex notation and $k!(k-1)!\Gamma(k+3 / 2) \approx\left(2 \pi / 3^{3 k+1}\right) \Gamma(3 k+3 / 2)$, we have

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{\sqrt{3} e^{-A_{e} Z} e^{-A_{i} \xi} e^{i \xi \sqrt{1-A_{i}^{2}}}}{2 \sqrt{\pi} \sqrt{1-A_{i}^{2}}}\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{-7 / 6}\left(\frac{Z}{2}\right)^{2 / 3} \tag{14}\\
& \times e^{i \frac{\pi}{12}} \sum_{k=1}^{\infty} \frac{1}{\Gamma(3 k+3 / 2)}\left[3\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{1 / 3}\left(\frac{Z}{2}\right)^{2 / 3} e^{-i \frac{\pi}{6}}\right]^{3 k+1 / 2} .
\end{align*}
$$

The sum in Eq. (14) approximates

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{e^{-A_{e} Z} e^{-A_{i} \xi}}{2 \sqrt{3 \pi} \sqrt{1-A_{i}^{2}}}\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{-7 / 6}\left(\frac{Z}{2}\right)^{2 / 3} \tag{15}\\
& \times e^{i\left(\xi \sqrt{1-A_{i}^{2}}-G / \sqrt{3}+\pi / 12\right)} e^{G}
\end{align*}
$$

where for a long pulse

$$
\begin{equation*}
G=(3 \sqrt{3} / 4)\left(\xi / \sqrt{1-A_{i}^{2}}\right)^{1 / 3} Z^{2 / 3} \tag{16}
\end{equation*}
$$

This factor has been previously obtained when damping is neglected [5, 6], giving BBU growth type A of Ref. [7].

For a given value of Z (axial location), $|\Delta b(Z, \xi)|$ peaks where $\xi \approx 0.285 Z / A_{i}^{3 / 2}$. The peak's velocity and spatial growth rate are $v /\left(1+.285 \omega_{e} \omega_{i}^{1 / 2} / \alpha_{i}^{3 / 2}\right)$ and $0.57 \omega_{e} \omega_{i}^{1 / 2} \alpha_{i}^{-1 / 2} / v-\alpha_{e} / v$, approximated by Eq. (4) for $\omega=\omega_{i}$.
The impulse response for a long pulse and its approximation by Eq. (15) are shown in Fig. 2.

Figure 2: The impulse response function and the longpulse approximation of Eq. (15), valid for $Z \ll \xi$.
(a) $\xi=20 \pi=62.8$.
(b) $Z=2 \pi=6.28$.

Medium Pulse Length

For $Z \sim \xi \gg 1$, the propagation distance (measured in electron betatron phase) is comparable to the pulse length (measured in ion bounce phase). For $Z^{1 / 2} \xi^{1 / 2} \gg 1$, Eq. (8) is dominated by terms with $k \sim \xi / 2 \sim Z / 2$, where the large-argument approximation applies to $J_{k-1 / 2}\left(\xi \sqrt{1-A_{i}^{2}}\right)$ and $J_{k+1 / 2}\left(Z \sqrt{1-A_{e}^{2}}\right)$. Approximating all terms, using complex notation and $k!(k-1)!\approx\left(\sqrt{2 \pi} / 2^{2 k}\right) \Gamma(2 k+1 / 2)$ gives

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{e^{-A_{e} Z} e^{-A_{i} \xi} e^{i \xi \sqrt{1-A_{i}^{2}}}}{2 \sqrt{\pi} \sqrt{1-A_{e}^{2}} \sqrt{1-A_{i}^{2}}}\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{-3 / 4}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 4} \\
& \times \sum_{k=1}^{\infty} \frac{1}{\Gamma(2 k+1 / 2)}\left[2\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{1 / 2}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 2}\right]^{2 k-1 / 2} \\
& \times\left[e^{i\left(Z \sqrt{1-A_{e}^{2}}-3 \pi / 4\right.}\left(e^{-i \pi / 2}\right)^{2 k-1 / 2}+e^{-i\left(Z \sqrt{1-A_{e}^{2}}-\pi / 2\right)}\right] . \tag{17}
\end{align*}
$$

The sum in Eq. (17) approximates

$$
\begin{align*}
& \left.\Delta b(Z, \xi) \approx \frac{e^{-A_{e} Z} e^{-A_{i} \xi} e^{i \xi} \sqrt{1-A_{i}^{2}}}{4 \sqrt{\pi} \sqrt{1-A_{e}^{2}} \sqrt{1-A_{i}^{2}}} \frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{-3 / 4}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 4} \\
& \times\left\{\begin{array}{l}
\left.\exp \left[2\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{1 / 2}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 2} e^{-i \pi / 2}\right] e^{i\left(Z \sqrt{1-A_{e}^{2}}-3 \pi / 4\right)}\right) \\
+\exp \left[2\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{1 / 2}\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 2}\right] e^{-i\left(Z \sqrt{1-A_{e}^{2}}-\pi / 2\right)}
\end{array}\right\} . \tag{18}
\end{align*}
$$

The growing term that dominates Eq. (18) is

$$
\begin{align*}
& \Delta b(Z, \xi) \approx \frac{e^{-A_{e} Z} e^{-A_{i} \xi}}{4 \sqrt{\pi} \sqrt{1-A_{e}^{2}} \sqrt{1-A_{i}^{2}}}\left(\frac{\xi}{2 \sqrt{1-A_{i}^{2}}}\right)^{-3 / 4} \tag{19}\\
& \times\left(\frac{Z}{2 \sqrt{1-A_{e}^{2}}}\right)^{1 / 4} e^{i\left(\xi \sqrt{1-A_{i}^{2}}-Z \sqrt{1-A_{e}^{2}}+\pi / 2\right)} e^{G}
\end{align*}
$$

Figure 3: The impulse response function and the mediumpulse approximation of Eq. (19), valid for $Z \sim \xi \gg 1$.
(a) $\xi=6 \pi=18.85$.
(b) $Z=6 \pi=18.85$.
where in the case of medium pulse length, the growth factor is

$$
\begin{equation*}
G=\left(\xi / \sqrt{1-A_{i}^{2}}\right)^{1 / 2}\left(Z / \sqrt{1-A_{e}^{2}}\right)^{1 / 2} \tag{20}
\end{equation*}
$$

This growth factor describes BBU growth when $s_{2} \approx s_{1}=1$ in the notation of Ref. [7].

Figure 3 shows the impulse function in the medium-pulse-length regime and its approximation by Eq. (19). For $Z \sim \xi \gg 1$, Eq. (19) provides a good approximation.

SUMMARY

The asymptotic growth of the IFR ion hose instability has been obtained in four regimes, including the wellknown short-pulse and long-pulse regimes. We also found growth for a short pulse that is propagated for a short distance, and the asymptotic growth in the medium-pulse-length regime where the number of electron betatron oscillations during the beam's propagation is comparable to the number of ion oscillations during the beam's passage.

REFERENCES

[1] G. I. Budker. Sov. J. At. En. 1, 673 (1956).
[2] H. L Buchanon, Phys. Fluids 30, 221 (1987).
[3] K. J. O'Brien, J. Appl. Phys. 65, 9 (1989).
[4] G. J. Caporaso and A. G. Cole, in "The Physics of Particle Accelerators", edited by M. Month and M. Dienes, AIP Conf. Proc. No. 249 (AIP, New York, 1992), p. 1615.
[5] D. H. Whittum, W. M. Sharp, S. S Yu, M. Lampe and G. Joyce, Phys. Rev. Lett. 67, 991 (1991).
[6] M. Lampe, G. Joyce, S. P. Slinker and D. H. Whittum, Phys. Fluids B 5, 1888 (1993).
[7] Y. Y. Lau, Phys. Rev. Lett. 63, 1141 (1989).
[8] R. A. Bosch, Phys. Rev. ST Accel. Beams 6, 074201 (2003).
[9] R. A. Bosch and R. M. Gilgenbach, Phys. Fluids 31, 2006 (1988).
[10] J. D. Jackson, "Classical Electrodynamics" (Wiley, New York, 1975), $2^{\text {nd }}$ ed., p. 105.

Beam Dynamics and Electromagnetic Fields

[^0]: *Work supported by NSF grant DMR-0537588
 \# bosch@src.wisc.edu

