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Abstract 
An electron beam focused by an ion channel without a 

magnetic field, in the so-called ion focus regime (IFR), 
may be disrupted by the transverse ion hose instability.  
We describe the growth in four regimes. 

INTRODUCTION 
Propagation of an electron beam focused by a 

preformed ion channel may be disrupted by the ion hose 
instability [1–3].  In the rigid-beam model [1] 

),(),( 222222 bcdtcdcbdtbd ie −ω−=−ω−=      (1) 

where ),( tzb  is the beam displacement, ),( tzc  is the 
channel displacement, z  is axial location, t  is time, 

zbvtbdtdb ∂∂+∂∂= ///  and tcdtdc ∂∂= //  where v  is 
the beam velocity, while eω  and iω  are the electron 
betatron frequency and the ion bounce frequency. 

Equation (1) describes an absolute instability, while the 
ion hose instability is actually a convective instability 
where a growing disturbance moves downstream and 
towards the tail of the beam [2].  This may be remedied 
by considering distributions of betatron and bounce 
frequencies [2].  We model Cauchy (also called 
Lorentzian) distributions with half-widths eα  and iα , 
whose frequency spreads give exponential decoherence of 
centroid oscillations approximated by linear damping [4] 
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Equation (2) also describes the electron hose instability 
of an electron beam that expels ions from uniform plasma 
[5, 6], the beam breakup (BBU) instability when the 
parameter 11 =s  [7], and the pe −  instability of a proton 
beam in a channel of electrons [8].  We model realistic 
damping with 1.0// =ωα=ωα iiee  [8]. 

DISPERSION RELATION 
A disturbance that is dominated by a single frequency is 

described by the dispersion relation.  For the ansatz 
)(

0),( tkziebtzb ω−= , )(
0),( tkziectzc ω−= , we can solve Eq. 

(2) for vk−ω≡Ω  as a function of ω , or vice versa 
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For a growing disturbance dominated by iω=ω , solving 
for Ω  gives the spatial growth rate and group velocity 
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For a growing disturbance dominated by eω=Ω , solving 
for ω  gives the temporal growth rate and group velocity 

.
)25.0/(1/)Re(

/)Re(
)Re(
)Re(

,5.0)Im(

2/12/3

2/1

2/1

eie
g

i
e

ei

v
dkd
dd

kd
dv

ωωα+
≈

Ω
Ωω=ω≈

α−
α

ωω≈ω
 (5) 

IMPULSE RESPONSE 
In terms of betatron phase vzZ e /ω≡  and ion bounce 

phase )/( vzti −ω≡ξ , Eq. (2) with an impulse becomes 
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where eeeA ωα≡ /  and iiiA ωα≡ / .  For a beam whose 
head is at 0=ξ  that enters an ion channel at 0=Z , 

),( ξZb  is the response to an impulsive force applied to 
the head of the beam at the entrance of the channel.  For 
underdamped electron and ion oscillations with 

1, <ie AA , the solution to Eq. (6) for an immobile ion 
channel with 0),( ≡ξZc  is [9] 
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For mobile ions, the solution is the sum of Eq. (7) and [9] 
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A similar formula describes the mobile ions [9].  For a 
pulse length of πξ 2/  ion bounce periods, ),( ξΔ Zb  is the 
tail offset after propagating π2/Z  betatron wavelengths. 

To approximate Eq. (8), we use the small and large 
argument approximations: ν−

ν +νΓ≈ )2/()]1([)( 1 xxJ  for 
ν<<x , )4/2/cos()/2()( 2/1 π−νπ−π≈ν xxxJ  for ν>>x  

[10], and an approximation of the gamma function: 
nn enn −+π≈+Γ 2/12)1(  for 1>>n . 
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Short Propagation Distance of a Short Pulse  
For 1, <<ξZ , the sum in Eq. (8) is dominated by the first 

term.  Applying the small-argument approximation to the 
Bessel functions gives the non-oscillating result 

6/),( 3ZZb ξ≈ξΔ .                                (9) 

Short Pulse 
For Z<<ξ , the pulse length (measured in ion bounce 

phase) is much shorter than the propagation distance 
(measured in electron betatron phase).  For 13/13/2 >>ξ Z , 
Eq. (8) is dominated by terms with Zk <<<<ξ , where 
the small-argument approximation applies to 

)1( 2
2/1 ik AJ −ξ−  and the large-argument approximation 

applies to )1( 2
2/1 ek AZJ −+ .  Applying these 

approximations to all of the terms and using complex 
notation where the real part gives the physical 
disturbance, we have 
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Using kk ekk −+π≈ 2/12! , kk ekkkk −−π≈=− 2/12/!)!1(  

and kk ekk −π≈+Γ 2)2/1(  gives   )2/1()!1(! +Γ− kkk  

)2/13()3/2( 3 +Γπ≈ kk , which yields 
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The sum in Eq. (11) approximates every third term of the 
Taylor series for an exponential, so that 
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where for a short pulse 
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is the exponential growth factor.  This factor has been 
previously obtained when damping is neglected [2, 3], 
and corresponds to BBU growth type C of Ref. [7].  The 
additional exponential factor ξ−− ie AzA  gives damping. 

For a given value of ξ  (a slice of the beam), the 
envelope |),(| ξΔ Zb  peaks where 2/3/285.0 eAZ ξ≈ .  The 
peak’s velocity and temporal growth rate are 

)]285.0/(1/[ 2/12/3
eiev ωωα+  and  ieei α−αωω − 2/12/157.0 , 

approximately given by Eq. (5) for eω=Ω . 
Figure 1 displays the oscillating impulse response for a 

short pulse and its approximation by Eq. (12). 

Long Pulse 
For ξ<<Z , the pulse length (measured in ion bounce 

phase) is much longer than the propagation distance 
(measured in betatron phase).  For 13/13/2 >>ξZ , Eq. (8) 
is dominated by terms with ξ<<<< kZ , where the large- 
and small-argument approximations apply to 

)1( 2
2/1 ik AJ −ξ−  and )1( 2

2/1 ek AZJ −+ , respectively.  
Approximating all terms, using complex notation and 

)2/33()3/2()2/3()!1(! 13 +Γπ≈+Γ− + kkkk k , we have 
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The sum in Eq. (14) approximates 
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where for a long pulse 
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This factor has been previously obtained when damping is 
neglected [5, 6], giving BBU growth type A of Ref. [7]. 

For a given value of Z  (axial location), |),(| ξΔ Zb  
peaks where 2/3/285.0 iAZ≈ξ .  The peak’s velocity and 

spatial growth rate are )/285.1/( 2/32/1
iiev αωω+  and 

vv eiie //57.0 2/12/1 α−αωω − , approximated by Eq. (4) for 

iω=ω .   
The impulse response for a long pulse and its 

approximation by Eq. (15) are shown in Fig. 2. 

0 50 100
Z

102

104

106

Δb
(Z

,ξ
)

(a)
exact
Eq. (12)

0 10 20

ξ

104

108

1012
(b)

exact
Eq. (12)

Figure 1: The impulse response function and the short-
pulse approximation of Eq. (12), valid for Z<<ξ . 
(a) 28.62 =π=ξ .  (b) 8.6220 =π=Z .   
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Figure 2: The impulse response function and the long-
pulse approximation of Eq. (15), valid for ξ<<Z .  
(a) 8.6220 =π=ξ .  (b) 28.62 =π=Z .   

Medium Pulse Length 
For 1~ >>ξZ , the propagation distance (measured in 

electron betatron phase) is comparable to the pulse length 
(measured in ion bounce phase).  For 12/12/1 >>ξZ , Eq. 
(8) is dominated by terms with 2/~2/~ Zk ξ , where 
the large-argument approximation applies to 

)1( 2
2/1 ik AJ −ξ−  and )1( 2

2/1 ek AZJ −+ .  Approximating 
all terms, using complex notation and 

)2/12()2/2()!1(! 2 +Γπ≈− kkk k  gives 
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(17) 
The sum in Eq. (17) approximates 
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(18) 
The growing term that dominates Eq. (18) is 
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Figure 3: The impulse response function and the medium-
pulse approximation of Eq. (19), valid for 1~ >>ξZ .  
(a) 85.186 =π=ξ .  (b) 85.186 =π=Z . 

where in the case of medium pulse length, the growth 
factor is 
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This growth factor describes BBU growth when 
112 =≈ ss  in the notation of Ref. [7]. 

Figure 3 shows the impulse function in the medium-
pulse-length regime and its approximation by Eq. (19).  
For 1~ >>ξZ , Eq. (19) provides a good approximation.   

SUMMARY 
The asymptotic growth of the IFR ion hose instability 

has been obtained in four regimes, including the well-
known short-pulse and long-pulse regimes.  We also 
found growth for a short pulse that is propagated for a 
short distance, and the asymptotic growth in the medium-
pulse-length regime where the number of electron 
betatron oscillations during the beam’s propagation is 
comparable to the number of ion oscillations during the 
beam’s passage. 
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