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Abstract 

The helical cooling channel is proposed to make a 
quick muon beam phase space cooling in a short channel 
length. The challenging part of the helical cooling channel 
magnet design is how to integrate the RF cavity into the 
compact helical cooling magnet. This report shows the 
possibility of the integration of the system. 

INTRODUCTION 
The helical cooling channel (HCC) is proposed to 

obtain the exceptional cooling performance in a short 
channel length [1]. It consists of a helical dipole and a 
solenoid magnet to generate a continuous dispersion. A 
helical quadrupole component is superimposed to increase 
the beam acceptance. A high pressurizing hydrogen gas 
filled RF cavity [2] is incorporated into the HCC magnet 
to make an ionization cooling and an energy loss 
compensation at the same time. Because the HCC makes 
a continuous emittance exchange it generates the six-
dimensional phase space cooling.  

The HCC simulation has been demonstrated by using 
the realistic helical magnet. The helical magnetic field is 
generated from the helical solenoid (HS) coils [3]. The 
helical magnet is a series of simple coil rings with each 
ring center located along with the helical beam path. The 
RF cavity is located in the center of the HS coil. There 
must be a gap between the RF cavity and the HS coil for a 
pressure wall, a thermal isolation, and a space for a 
cooling pipe of the RF cavity and for an RF power 
transport cable. In this document, we will discuss what is 
the required gap and how the HCC will preserve the 
cooling performance with the realistic geometry 
configuration.  

DESIGN REALISTIC HELICAL MAGNET 
Required ap between RF Cavity and HS Coil 

In the current HCC design, the RF cavity is operated 
under liquid nitrogen (LN2) temperature. The density of a 
50 atm gaseous hydrogen absorber in the HCC is, 
therefore, 1/8 of the liquid hydrogen density. The pressure 
wall is designed by using the ANSYS mechanical analysis 
package. A typical result is shown in Figure 1. The helical 
tangential pitch is 1.0 and the helical period is 1.6 m. 
These geometric parameters are close to the first and 
second HCC segments (shown in Figure 5). SS316, 
Inconel625, and Inconel718 were tested as wall materials. 
The inner diameter of the helical tube is 0.5 m. The 
required thicknesses for these wall materials are 0.75, 0.5, 

and 0.35 inches, respectively, using a safety factor 4 
based on the ASME code. From the mechanical analysis, 
10 mm thickness wall with Inconel718 will be sufficient 
for the pressure barrier.  

 

 
Figure 1: Mechanical analysis of high pressurized helical 
tube.  

There is a liquid nitrogen (LN2) jacket outside the 
pressure wall to operate the RF cavity at LN2 
temperature. The thickness of LN2 will be strongly 
dependent on the RF power loss on the wall. A LN2 will 
use convection flow to remove the heat effectively for 
high heat deposition. We assume that 10 mm LN2 jacket 
would be sufficient to keep the temperature of RF cavity.  
There must be a vacuum gap between the LN2 and the 
liquid helium (LHe) layers for thermal insulation. An RF 
power transport cable will be stretched in this gap. We 
assume that 1 inch diameter coaxial cable will be 
sufficient for the RF power transportation. Hence, the 
vacuum gap is designed to be 40 mm.  

The helical magnet will be made of a superconducting 
(SC) cable. The magnet is in an LHe bath. There must be 
a SC support and a super insulator to avoid the radiation 
heating from the LN2 jacket. We expect that a 20 mm gap 
will be sufficient for those layers.  

Figure 2 shows the schematic picture of the required 
thickness for each layer. The gap in the vacuum layer 
seems to be larger than the requirement. This 
overestimated space will be absorbed by some unknown 
factor in some layer. In the current design, the total gap 
between the HS coil and the helical RF cavity is designed 
to be 80 mm. 
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