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Abstract

The study of the interaction between a particle beam and
wake fields is usually based on the assumption of ultra rel-
ativistic beams. This is not the case, for example, for the
Proton Synchrotron Booster (PSB), in which protons cover
the energy range 50MeV - 1.4GeV (γ ≈ 2.5).

There are some examples in literature which derive non
ultra relativistic formulas for the resistive wall impedance.
In this paper we have extended the Broad Band resonator
model, allowing the impedance to have poles even in the
upper half complex plane, in order to obtain a wake func-
tion different from zero for z > 0. The Haissinski equation
has been numerically solved showing longitudinal bunch
shape changes with γ. In addition some longitudinal bunch
profile measurements, taken for two different bunch inten-
sities in the PSB, are shown.

INTRODUCTION

The wake functions W (z) have been introduced in or-
der to describe the interaction between the charged particle
beams with their surrounding, and the consequent pertur-
bations on the dynamics of the beam itself. The Fourier
transform of the wake function is a complex function called
impedance Z(ω).

One of the important contributions to the total machine
impedance is the Broad Band impedance modeling the in-
tegrated effect of several discontinuities and equipments.

Due to the fact that in the ultra relativistic regime the
wake function W (z) has to be zero for any z > 0 (causal-
ity principle), the broad band wake function has a discon-
tinuity at z = 0 being limz→0− W (z) = 2W (0) according
to the Panofsky-Wensel theorem [1]. On the other hand the
wake functions are continuous functions of z for β < 1 z
[2]. This means that the wake function should be non-zero
also in front of the source charge and should approach the
limit function, with its discontinuity, in the ultra relativistic
case when β → 1. For proton machines such as the PSB
the kinetic energy of the beam ranges from 50 MeV up to
1.4 GeV and consequently β goes from β = 0.314 up to
β = 0.916.

For this purpose we introduced a sequence of distribu-
tions in which the ultra relativistic limit can converge to the
wake function in its usual relativistic form. In addition we
have numerically solved the Haissinski equation in order
to check the differences while trying to simulate charged
particle bunches at non ultra relativistic energies.

THE MODEL AND THE IMPEDANCE
CALCULATION

In this section we calculate the longitudinal impedance
as the inverse transform of the wake function. Starting from
the assumption of β ≈ 1 the m = 0 longitudinal wake
function W ′

0(z) reads [1]

W ′
0(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if z > 0,

αRS if z = 0,

2αRS eαz/c
(
cos (ω̄z/c) +

+
α

ω̄
sin (ω̄z/c)

) if z < 0,

(1)
where α = ωR/2Q and ω̄ =

√
ω2

R − α2, Q and ωR being
respectively the quality factor and the resonant frequency
of the impedance

Z
‖
0 (ω) =

RS

1 + iQ
(

ωR

ω − ω
ωR

) (2)

with the Eq. (1) being the inverse Fourier transform of
Eq. (2): Z‖ (ω) = 1/c

∫ ∞
−∞ dz e−iωz/cW ′(z). The trans-

verse Broad Band impedance is simply given by Z⊥ =
2RZ

‖
0/b2n, with R being the machine radius, b the beam

pipe radius and n = ω/ω0.
We easily cast the Eq. (2) in the following form

Z‖(ω) =
RS ω ωR

(ω − ω−) (ω − ω+)
(3)

where ω± = (−iα± ω̄). The property W ′(z) = 0 if z > 0
follows from the fact that Z‖(ω) has its poles only in half
lower complex plane.

To ease this constrain we built a succession of continu-
ous functions Ŵ ′(z; β) which have the property

lim
β→1

〈Ŵ ′(z; β), ϕ(z)〉 = 〈W ′(z), ϕ(z)〉 ∀ϕ ∈ C∞

(4)
and being the Fourier transform a continuous application
we also have

lim
β→1

Ẑ‖ (ω; β) = Z‖ (ω) (5)

The used Ŵ ′(z; β) functions are Fermi-like distributions
multiplied by the wake function W ′(z)

Ŵ ′(z; β) = g(z; β)W ′(z) =
β

1 + eω̄zγ/βc
W ′(z). (6)
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Figure 1: Comparison between longitudinal (left column)
and transverse (right column) ultra relativistic wake func-
tion Eq. (1) (−) and the the proposed non ultra relativistic
one Eq. (6) (−) for three different energies.

When considering the transverse wake function W1(z)
we used the same approach. In Fig. 1 we plot the trans-
verse and the longitudinal broad band wake functions
for the three energies of the PSB beam. Performing
in Eq. (6) the limit β → 1 we have that g(z; β) →
θ(z)(Heaviside distribution) and we gain back the causal-
ity principle having W ′(z) = 0 for z > 0. The func-
tion Eq. (6) has poles in the complex plane for ξ̂ =
iπ/ω̂γ (1 + 2k) with k ∈ N. Introducing the following
functions

⎧
⎪⎨

⎪⎩

fC (z) = ĉeAz cos (ω̂z)
1

1 + eω̂γz

fS (z) = ĉeAz sin (ω̂z)
1

1 + eω̂γz

(7)

with A = α/βc, ĉ = 2α2βRS/ω̄ and ω̂ = ω̄/βc we cal-
culate their Fourier transform on the path Fig. 2 and the we
solve the linear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IC

[

1 − ch

(
2π

γ

)

e

(
2π
γω̂

(ω/βc+iA)
)]

+ ish

(
2π

γ

)

·

e

(
2π
γω̂

(ω/βc+iA)
)

IS = −2πi

ω̂γ
ĉce

(
2π
γω̂

(ω/βc+iA)
)

ch

(
π

γ

)

IS

[

1 − ch

(
2π

γ

)

e

(
2π
γω̂

(ω/βc+iA)
)]

− ish

(
2π

γ

)

·

e

(
2π
γω̂

(ω/βc+iA)
)

IC =
2π

ω̂γ
ĉce

(
2π
γω̂

(ω/βc+iA)
)

ch

(
π

γ

)

(8)

y

Γ 2πi/ω̂γ

R−R

πi/ω̂γ

z

Figure 2: The Γ curve for calculating the Fourier transform.

with IC/S = 1/βc
∫ ∞
−∞ dze−iωz/βcfC/S(z). The longitu-

dinal and the transverse Broad Band impedances are hence
given by

⎧
⎨

⎩

Z‖ (ω) = IS(ω) +
ω̄

α
IC(ω)

Z⊥ (ω) = IS(ω)/ω̄
(9)

In Fig. 3 we have the comparison between the impedance
functions for two different values of β.
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Figure 3: Comparison between the imaginary (left column)
and real (right column) part of the longitudinal ultra rela-
tivistic Broad Band impedance using Eq. (1) (−) and the
proposed non ultra relativistic one Eq. (6) (−) for three dif-
ferent energies.

EFFECTS ON LONGITUDINAL BUNCH
DISTRIBUTION

In order to study the effects on the bunch dynamics we
numerically solved the longitudinal equilibrium dynamics
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for a non relativistic bunch. This is done by solving the
Vlasov equation for the longitudinal distribution ρ̂ (z, δ),
which reduces to the Haissinski equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ (z) = ρ (0) exp

[

−1

2

(
z

σz

)2

+ α

∫

dz′ (ρ ∗ W ′) (z′)

]

ρ(z) =

∫

dδρ̂ (z, δ) , N =

∫

dzρ(z), α =
e2

CηE0c2σ2
δ

(10)
where (f ∗ g) (x) =

∫

R
dx′f(x′)g(x − x′) is the usual

linear convolution between two functions, since W ′(z) 	=
0 for z > 0. Eq. (10) can be numerically solved by the
method of successive approximations until convergence is
reached. An initial matched Gaussian distribution is taken
as first guess

ρ0(z) =
1√

2πσz

e
− z2

2σ2
s with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σz =
σδ|η|βc

ωs

ωs =
2πQs

T0
=

βc

R

√

e|η|V̂ h

2πβ2E0

(11)
where V̂ is the RF voltage, h is the harmonic number, σδ

is the rms momentum spread, R the machine radius and T0

the revolution period, ωs is the synchrotron frequency and
C is the machine circumference. For a given ωs the relation
between σz and σδ is fixed by the “matching” condition
ρ =

∫
dδρ̂

(−k2H (z, δ)
)

, H (z, δ) being the Hamilto-
nian function for the longitudinal motion and k an arbitrary
constant. For bunches much shorter than the RF bucket, the
matching condition reads as reported in Eq. (11).

We solved Eq. (10) using the ultra relativistic Broad
Band Eq. (1) (U. R. BB) and the non ultra relativistic Broad
Band Eq. (9) (N. U. R. BB) wake function for the PSB
bunch at a kinetic energy of 1.4 GeV. In Tab. 1 we show
the PSB parameters we used to solve the Haissinki equa-
tion.

Table 1: Parameters Used to Solve Eq. (10) for the PSB
Bunch at 1.4 GeV

relativistic beta β 0.916

bunch length σz [m] 15.8

RF voltage V̂ [KV] 8

Shunt impedance RS [KΩ] 1

Resonant frequency ωr [GHz] 6

Quality factor Q 1

Slippage factor η -0.1

In Fig. 4 we plot the solution of the Haissinski equation
Eq. (10) for three different values of the bunch population
N , using the longitudinal wake field Eq. (6) and the ma-
chine values written in Tab. 1.

In Fig. 5 we compare the experimental data between the
solution of the Haissinski equation for the ultra relativistic
and the non ultra relativistic case. We acquired the longitu-
dinal shape of the beam each 75 turn of the PSB and we av-
eraged the shape over 60 acquisitions while the bunch was
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Figure 4: Numerical solution of the Haissinski equation
using Eq. (6) as wake function. We used three different
bunch populations N : N = 1 · 1013 (−), N = 2 · 1013 (−)
and N = 3 · 1013 (−).

stationary. From Fig. 5 we can see that the bunch shift is
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Figure 5: Numerical solution of the Haissinski equation us-
ing Eq. (1) − and Eq. (6) − as a wake function. The numer-
ical solution has been compared against the numerical data
acquired • at the PSB for a bunch with N = 4.9 · 1012(left)
and N = 6.9 · 1012(right) particles at 1.4 GeV kinetic en-
ergy.

enhanced using Eq. (6) instead of the classical Broad Band
wake field.

CONCLUSIONS

In this paper we tried to extend the classical Broad Band
model normally used to describe the general impedance of
the machine. We used a sequence of distributions to smooth
the wake functions in the region z = 0. We calculated the
impedance as the Fourier transform of the wake field.

As a first application of this non ultra relativistic field
we solved the Haissinski equation for the longitudinal dis-
tribution of a bunch in a linear bucket: the peak of the equi-
librium solution shows a bigger shift which better matches
with the experimental data taken at PSB.
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