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Abstract

The usual approach for the resistive pipe wall assumes
the beam moves with the speed of light. For many low en-
ergy rings, such as the Proton Synchrotron Booster (PBS),
possible performance limitations may arise from non rela-
tivistic resistive wall wake fields. In this regime not only
the head of the bunch can interact with the tail but also the
vice versa holds.

In this paper we analyze numerical results showing
the resistive wake field calculated from non relativistic
impedance models. In addition we analyze the well known
two particles model assuming that even the trailing particle
can affect the leading one. We observe significant changes
in the stability domain.

INTRODUCTION

Several accelerators, such as the PS booster (PSB) and
the Proton Synchrotron (PS) at CERN produce intense pro-
ton beams at energies around 1 GeV. This regime is quite
far from the ultra relativistic one: for the PSB a proton has
γ � 2 at the highest kinetic energy. For high intensity beam
a possible limitation could be represented by the resistive
wall impedance.

The ultra relativistic approach for the resistive wall
impedance assumes the excited wake field to be zero in
front of each particle. On the other hand for a low energy
bunch , not only the leading particle can affect the trailing
one but also the vice versa.

In literature we can find some examples which de-
rive non ultra relativistic formulae for the resistive wall
impedance [1]-[3]. In this paper we used the approach
developed by Zimmermann and Oide [1] and we numeri-
cally calculated the resistive wall wake functions as inverse
Fourier transform of the impedance.

In order to study possible effects on the bunch stability,
we modified the so called two particle model allowing the
trailing particle to effect the dynamics of the leading one
and we studied the stability of the system.

THE IMPEDANCE CALCULATIONS

As we already mentioned, in order to calculate the wake
fields, we start from Eq. (51) in reference [1].
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where c is the speed of light, Z0 = μ0c = 120πΩ, b is
the beam pipe radius, r is the radial coordinate of the test
particle, Ij , Kj are the j-th order modified Bessel function
and {
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σ and μ being respectively the conductivity and the perme-
ability of the beam pipe. In the Eq. (2) we have to sub-
tract the contribution of the direct space charge, in order
to obtain the resistive wall impedance. The space charge
contribute is given by
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and after a little algebra we obtain
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(4)
which is the longitudinal resistive wall impedance for an
arbitrary β. The following plots Fig. 1 show the longitudi-
nal impedance for two different energies at the PSB.
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Figure 1: Comparison between the real (left) and the
imaginary (right) part of the longitudinal resistive wall
impedance, for ultra relativistic approach [4] (−) and non
ultra relativistic one (−) Eq. (7).

In the computation of the transverse impedance, due to a
more complicated expression, we used the approximation

Z⊥(ω) ∼ 2βc

b2ω
Z‖(ω) (5)
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which is always valid for the resistive wall impedance at
medium and high frequency regime [4]. Fig. 2 shows the
transverse resistive wall impedance starting from Eq. (4)
and applying the approximation Eq. (5).
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Figure 2: Comparison between the real (left) and imaginary
(right) part of the transverse resistive wall impedance, for
ultra relativistic approach [4] (−) and non ultrarelativiscit
one (−) casting Eq. (4) in Eq. (5).

In the former plots we scanned the impedance frequency
up to ω = 1011 and we observe that the higher the β the
slower is the convergence of both the real and imaginary
part of the impedance to zero.

Performing the numerical Fourier transform (via the FFT
algorithm) of the impedance Eq. (4) and Eq. (5) we obtain-
ing the longitudinal and transverse wake field, W ′

0(z) and
W1(z) respectively which are given by
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In Fig. 3 we show the results we obtained compared against
the ultra relativistic case, to which the calculated wake
fields converge when β → 1. Concerning the transverse
wake field we experienced some numerical problems at low
frequencies when applying the FFT algorithm. Indeed to
avoid this problem we expanded Eq. (4) for the high fre-
quency regime. Due to the fact that for β < 1 the wake
functions should be continuous functions of z in the neigh-
bourhood of z = 0 [5], we performed the limit of Eq. (4)
as ω approaches high frequencies, which means small z.
In fact to perform this limit we should consider the quan-
tity b|ω|/γβc � 1 which reads |z| � b/γ in z-space:
these are the ranges of validity for the transverse resistive
wall impedance and wake field respectively. Expanding the
Bessel functions as reported in [6] we obtain the following
representation of Eq. (4)
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Figure 3: Comparison between the ultra relativistic (−)
and the non ultra relativistic (−) longitudinal resistive wall
wake field for three different energies available at PSB. The
filled region (•) is the area between the non ultra relativistic
wake and the W ′

0 = 0 axis. The bottom right plot shows
the comparison in log scale of the absolute value of the field
for the different energies and for the ultra relativistic case.

In Fig. 4 we compare Eq. (7) against Eq. (4).
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Figure 4: Comparison between Eq. (7) (−) and its approx-
imation at high frequency Eq. (4) (−).

Applying Eq. (5) to Eq. (7) we obtain an approximation
of the transverse resistive wall impedance at high frequen-
cies. In Fig. 5 we plot the transverse resistive wall wake
fields for two different energies at PSB.
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Figure 5: Transverse resistive wall wake field (−) for small
distances, at two different energies. The arrow (↔) indi-
cates the range of validity.
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EFFECTS ON THE TRANSVERSE MODE
COUPLING INSTABILITY

In order to study the mechanism of the Transverse Mode
Coupling Instability (TMCI) we consider the so called two
particles model, in which the bunch is described by a
leading and a trailing particle having transverse displace-
ment y1 and y2 respectively. They do not only oscillate
transversally with a frequency ωβ but also have a syn-
chrotron motion of frequency ωs = 2π/Ts. During time
t ∈ [nTs; (2n+1)Ts/2] particle 1 leads particle 2 and vice
versa during time t ∈ [(2n + 1)Ts/2; nTs] with n ∈ N.
The equations of motion for the system are given by

�Φ =

0
BB@

x′
1

− (ωβ/c)2 x1 + α1x2

x′
2

− (ωβ/c)2 x2 + α2x1

1
CCA , αj =

Nr0Wj

2γC
, j = 1, 2.

(8)
and we solved the system �̇x = �Φ(�x) numerically. In writ-

ing Eq. (8) we assumed the wake fields Wj (integrated over
the machine circumference C) are constant, and N repre-
sent the intensity of the bunch.

We solved Eq. (8) assuming not only the leading par-
ticle affecting the trailing one but also the contrary holds
true. In Fig. 6 we plot the stability region in the (ωβ/ωs, Γ)
plane for different values of W1, which is the value of the
wake field that the trailing particle applies on the leading
one. The quantity Γ = πNr0W2c2

4γCωβωs
gives an estimation of

the bunch intensity and the wake field strengths. In partic-
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Figure 6: Stability region in the (ωβ/ωs, Γ) plane for the
two particle beam against the TMCI. The blue dotted re-
gions (•) are those where the system is unstable. The red
line (−) stands for the border of stability of the system at
the ultra relativistic regime. The values used for the simu-
lations are: α1 = −0.1α2 plot I ), α1 = −0.5α2 plot II ),
α1 = 0.1α2 plot III ) and α1 = 0.1α2 plot IV )

ular from plot IV ) of Fig. 6 we can observe that the system
could becomes stable again for a fixed value of ωβ/ωs in-
creasing the bunch intensity. In Fig. 7 we plot the frequency
spectrum of the center of charge of the beam. We observe
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Figure 7: Frequency spectrum of the center of charge
(which is y1 + y2) of the beam versus the bunch intensity.
The instability occurs when the mode frequencies merge.
This happens for Γ ∼ 2 in the ultra relativistic case (left),
and the system stays unstable. For the non ultra relativis-
tic one (right) the system becomes unstable at Γ ∼ 2 for
a fist time: the mode frequencies then splits for Γ ∼ 4 ,
the system returns to be stable and then unstable again for
Γ ∼ 7.

that the ultra relativistic case gets unstable when Γ → 2 and
remains unstable while increasing the bunch population N .
On the other hand we observed the coupling (Γ ∼ 2) and
decoupling (Γ ∼ 4) for the non ultrarelativiscit case when
α1 = α2/2.

CONCLUSIONS

We have calculated numerically the longitudinal resis-
tive wall wake field in the non ultra relativistic regime. We
have seen that the longitudinal field in front of the lead-
ing particle is not negligible. In the high-frequency/short-
distances regime, we have also obtained the transverse non
relativistic resistive wall wake. We can also see a change
of sign in the neighbourhood of z = 0, for the longitudinal
and the transversal wake fields.

In addition we have simulated with a simple model the
possible affects on the TMCI, considering a nonzero wake
when z > 0. We studied in the details the spectrum of the
bunch center of charge in the case of a coupling and decou-
pling of the modes with increasing the bunch intensity.
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