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Abstract 
This paper presents the development of parallel direct 

Vlasov solvers using the Spectral Element Method 
(SEM). There are several benefits to the direct method 
over the standard PIC approach for solving the Vlasov 
equation, such as avoiding the noise associated with a 
finite number of particles and the capability to capture the 
fine structure in the plasma. The most challenging aspect 
of the direct Vlasov solver is the size of the problem 
where the computational cost increases as dN 2 , where d 
is the dimension of the physical space and N the number 
of mesh nodes per dimension. We show that the SEM 
method has several advantages, such as easy interpolation 
due to local element structure and long time integration 
due to its high order accuracy. Domain decomposition in 
high dimensions is used for parallelization, includes 
scalable parallel 2D Poisson solvers. Benchmarks and 
simulation results are reported in two dimensions in both 
the physical and velocity spaces (2P2V). 

INTRODUCTION 
Plasma and charged particle simulations have great 

importance in science. There are three different 
approaches to simulate plasmas: the microscopic model, 
the kinetic model and the fluid model. In the microscopic 
model, each charged particle is described by 6 variables 
(x, y, z, zyx vvv ,, ). Therefore, for N particles, there are 
6N variables in total. This requires solving the Vlasov 
equation in 6N dimensions, which exceeds the capability 
of current supercomputers for very large N. On the other 
end is the fluid model which is the simplest because it 
treats the plasma as a conducting fluid with 
electromagnetic forces exerted on it. This leads to solving 
the Magneto-hydrodynamics (MHD) equations in 3D (x, 
y and z). MHD solves for the average quantities, such as 
density and charge, which makes it difficult to describe 
the fine structure in the plasma. Due to computer speed 
limitations, MHD is currently the most popular approach 
in plasma simulations. Between these two models is the 
kinetic model, which solves for the charge density 
function by solving the Boltzmann or Vlasov equations in 
6 dimensions (x, y, z, zyx vvv ,, ). The Vlasov equation 
describes the evolution of a system of particles under the 
effects of self-consistent electromagnetic fields. This 
paper deals with the kinetic model.  

There are two different ways to solve the kinetic model. 
The most popular one is to represent the beam bunch by 
macro particles and push the macro particles along the 
characteristics of the Vlasov equation. This is the so 

called Particle-In-Cell (PIC) method, which utilizes the 
motion of the particles along the characteristics of the 
Vlasov-equation using a Lagrange-Euler approach [1, 2]. 
In principle, it simplifies the Partial Differential Equation 
(PDE) to an Ordinary Differential Equation (ODE). The 
interaction between charged particles, which is called the 
space charge force, is handled by solving Poisson’s 
equation. Then the electric field from the potential 
solution can be computed. The PIC method has the 
advantages of speed and easy implementation, but similar 
to MHD, it is hard to calculate fine structures in the 
plasma. Furthermore, there is noise associated with the 
finite number of particles in the simulation. This noise 
decreases very slowly, as N/1 , when the number of 
particles N is increased.  

The other way to solve the kinetic model is to solve the 
Vlasov equation directly. This can overcome the 
shortcomings of the PIC method, but due to the high 
dimensional nature of the Vlasov equation, numerical 
simulations have generally been conducted in low 
dimensions such as 1P1V or the axisymmetric case [3, 4]. 
Recently, 2P2V simulations have been reported [5]. We 
have applied SEM which can achieve high order accuracy 
than [5] and developed scalable Poisson and Vlasov 
solvers to make use of the BG/P supercomputer at ANL. 

VLASOV EQUATION 
The distribution function ),,( tvxf rr  in phase space is 

governed by the Vlasov equation. In beam dynamics, a 
simplified model can be deduced in 2P2V form as a 
paraxial model based on the following assumptions: 

• The beam is in a steady-state: All partial derivatives 
with respect to time vanish; 

• The beam is sufficiently long so that the longitudinal 
self-consistent forces can be neglected; 

• The beam is propagating at a constant velocity bv  
along the propagation axis z; 

• Electromagnetic self-forces are included; 
•  , and ~ ),,,( byxbzzyx ppppppppp <<=r

  where bb mvp γ= is the beam momentum. It follows in 
particular that 

2/122 )1(  ,)/( −−=≈=≈ bbbb cv βγγββ  
• The beam is narrow: the transverse dimensions of the 

beam are small compared to the characteristic 
longitudinal dimension. The paraxial model can be 
written as: 
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Where sΦ  is the self-consistent electric potential due to 
charges. eE

r
 and eB

r
 are external electric and magnetic 

fields. bv  is the reference beam velocity. 

NUMERICAL METHOD 
The Spectral Element Method (SEM) originated in 

the 1980’s [6, 7, 8], and has been applied in many 
different areas. It has been used for interpolation and 
solving Poisson’s equation. The Semi-Lagrangian Method 
(SLM) [9] has been used for time integration. The time 
splitting scheme has been used for time integration as 
proposed by Cheng and Knorr [10]. It combines the 
flexibility of the finite element method and the high-order 
accuracy of the spectral method. The SEM is 
characterized by its close relation with orthogonal 
polynomials and Gaussian quadrature. The SEM shows 
great advantages compared to other methods in many 
application areas. 

PARALLEL SOLVERS 

Parallel Poisson Solvers 
Domain decomposition has been used for 2D Poisson 

solvers with Dirichlet boundary conditions. Due to 
memory limitation only the iterative solver has been 
developed for solving boundary modes of the 2D 
Poisson’s equation. Interior modes in each element have 
been solved according to the Shur complement. The 
discrete system of Poisson’s equation can be written as: (b 
and i correspond to boundary and interior variables) 

 
Table 1: Scaling 2D Poisson Solver (E=64, P=4) 
CPU 16 64 256 1024 4096 
Time (s) 286 68 17.2 4.08 1.66 
PE 1.0 1.0 1.0 1.0 0.673 
 

 

Parallel Algorithms 
The code comprises two major parts: interpolation and 

space charge (SC) calculation. The SLM performs back 
tracking and interpolation respectively in the physical and 
velocity spaces. Each processor has only part of the 
global mesh for the space charge calculations. The field 
mesh and space charge mesh are different. This scheme 
has the advantage of easy implementation and no 
communication for particle tracking is required. However, 
this method requires large memory in each processor and 
intense communication for the parallel Poisson solver. 
Figure 1 (left) shows the domain decomposition in 4D for 
2P2V simulations. 

BENCHMARKS AND SIMULATION 
RESULTS 

Benchmarks 
Table 1 shows the benchmark results for the 2D 

Poisson solver. Good scaling has been achieved. Figure 1 
(middle) compares the interpolation errors with cubic 
spline, Jacobi polynomial with P=2 and 4. Clearly using a 
Jacobi polynomial gives much better results, which is 
good to use in the Semi-Lagrangian scheme. The right 
plot in Fig. 1 shows the strong scaling results for both the 
Poisson and Vlasov solvers in 2P2V simulations. It shows 
that the Vlasov solver can have good scaling because the 
most time consuming part is the interpolation. And since 
the interpolations are local on each processor, there is no 
communication between different processors. So even 
when the scaling of the Poisson solver becomes worse 
with 4k processors, the overall scaling is still good. 

2P2V Simulations 
In 2P2V simulations, a proton beam has been simulated 

through alternating hard edge electric quadruple channel. 
The initial emittance is πε 200= mm mrad, and the 
energy is W=0.2 MeV. The current of the beam is 0.1 A, 
and the reference velocity is 61019.6 ×=bv m/s. The  
transverse physical space is [-0.12, 0.12] by [-0.12, 0.12], 
and the velocity space is ]108,108[ 55 ××−  by 

]108,108[ 55 ××−  m/s. The alternating electric quadruple 
field is defined as ))(- ,)((),,( 00 yzkxzkzyxEe =

r
. 
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Figure 1: 4D domain decomposition (left), Interpolation errors vs. element number (middle) and strong scaling in 
2P2V simulation (right). 
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The left plot in Fig. 2 shows the rmsrmsX Y and  
values, the middle plot is for rmsrmsXX YY' and' , the right 
one is the potential distribution. Since the initial beam 
distribution is Gaussian (not a KV distribution), the RMS 
envelope is not periodic with the amplitude fluctuating 
from one period to the next. Figure 3 shows the beam 
contours in (x, y), (x, x’), (y, y’) and (x’, y’) phase planes 
at z=0 and 192 steps. 

SUMMARY 
This paper presents our first efforts to develop parallel 

direct Vlasov solvers with a high-order SEM. The 
advantages and effectiveness of the SEM have been 
demonstrated. A 2P2V Vlasov solver has been 
successfully developed using the Semi-Lagrangian 
method. Domain decomposition has been used for 
parallelization of these solvers. Scalable Poisson solvers 
have been developed within. Benchmarks of the parallel 
models have shown good scaling on BlueGene/P at ANL 
with up to 4k processors. The SEM shows its advantages 
in these direct Vlasov solvers, such as local interpolation, 
easy parallelization and long time integration. These first 
explorations are encouraging, and higher dimensional 
problems are under investigation and will be reported in 
the near future. We will also compare transport of 4D 
transverse emittance DC beam using the Vlasov approach 
with the ray tracing (PIC) method. 
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Figure 3: From top to bottom are contours in the (x, y), 
(x, x’), (y, y’) and (x’, y’) planes, from left to right 
correspond to z=0 and 192 time steps. 
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Figure 2: RMS for X and Y (left), RMS for XX’ and YY’ (middle), potential (right). 
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