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INTRODUCTION

We present two new techniques to represent particle dis-
tributions in beam dynamics simulations. As an application
we consider 2D simulations of coherent synchrotron radi-
ation (CSR) with the code developed in [1]. In the current
version of the code, a Monte Carlo particle (MCP) method
is implemented to represent the particle distribution sam-
pled by N point-charge particles based on a truncated co-
sine expansion. The particle distribution is then evaluated
on a finite grid and stored for computation of retarded po-
tentials. The alternative representations outlined here are
both grid-based, so the first step in their implementation is
a particle deposition on a finite grid. The resulting gridded
representation is fairly noisy and therefore not very com-
petitive in terms of accuracy (about an order of magnitude
less accurate than the cosine expansion), but nearly three
orders of magnitude more efficient.

The first alternative technique uses Fast Cosine Trans-
forms (FCT) to transform the gridded distribution to
Fourier space, where it truncates higher order frequencies
by retaining only a fraction of the cosine coefficients. This
non-discriminatory removal of the small scale structure re-
sults in smoothening of the distribution, and represents an
overly simplistic method for noise removal. The truncated
FCT technique is equivalent to the Monte Carlo cosine ex-
pansion in terms of accuracy, but about three orders of mag-
nitude more efficient.

The second alternative technique uses Discrete Wavelet
Transforms (DFT) to transform the gridded distribution
to wavelet space, where it performs wavelet thresholding,
thereby largely removing the numerical noise intrinsic in
numerical simulations. Transforming back to the physi-
cal space yields an approximation to the particle distribu-
tion which is more accurate than the cosine expansion – as
quantified by the L2 norm of the error and the Signal-to-
Noise Ratio (SNR) – and still about three orders of magni-
tude faster.

PARTICLE DEPOSITION AND DENSITY
ESTIMATION

The MCP method implemented in [1] is a meshless
method that gives a smooth particle distribution at the price
of a costly evaluation of the Fourier coefficients. Here we
propose a mesh method based on particle charge deposi-
tion, in the spirit of traditional PIC codes. The accuracy
of the grid representation scales as the square root of the
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number of particles per cell. Taking it a step further, by
properly understanding the nature and profile of the noise
associated with the particle deposition scheme, we propose
the use of a wavelet basis – which provides a natural way
to efficiently separate noise from signal – to denoise and
smoothen the grid distribution and compare it to the FCT
method.

Filtered Fast Cosine Transform

We introduce the alternative cosine expansion which is
considerably faster then the MCP method currently used in
[1]. The algorithm can be outlined as follows:

1. Deposit particles on the (Nx, Nz) grid.

2. Apply 2D FCT on the grid, thus yielding (Nx, Nz)
cosine coefficients.

3. The high-frequency contribution to the density is then
removed by filtering (truncating) coefficients higher
than Ncx and Ncz in x- and z-coordinate, respectively.
This removal of the high-frequency components re-
sults in a smoother distribution, but it also removes
small scale structures that may not be due to noise.
The truncation of the Fourier coefficients also restrict
spatial resolution of the representation.

4. Apply 2D inverse FCT on the grid, to obtain the
smoothed distribution in physical space.

Wavelet-Denoised Density

The wavelet-denoised algorithm for estimating particle
density can be outlined as follows:

1. Deposit particles on the (Nx, Nz) grid.

2. Apply Anscombe transformation to convert the signal
polluted by Poissonian noise (the gridded particle dis-
tribution) to the signal with Gaussian noise.

3. Apply 2D DWT on the grid, thus yielding (Nx, Nz)
wavelet coefficients.

4. Perform wavelet thresholding on the wavelet co-
efficients in order to remove numerical noise and
smoothen the particle distribution. Unlike the filtering
of the cosine coefficients in Fourier space, this judi-
cious noise removal does not restrict the spatial reso-
lution of the distribution: small-scale structures which
are not deemed to be noise during wavelet threshold-
ing (i.e., the amplitude of the corresponding wavelet

TH5PFP043 Proceedings of PAC09, Vancouver, BC, Canada

3296

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques



coefficients is larger than the threshold) are retained
in the denoised distribution.

5. Apply 2D inverse DWT on the grid, to obtain the
smoothed distribution in physical space.

6. Apply inverse Anscombe transformation.

FAST COSINE TRANSFORM VS
DISCRETE WAVELET TRANSFORM

We now compare the accuracy and efficiency of the
wavelet-denoised grid distribution and the filtered fast co-
sine approximation considering the initial distribution used
in [1] to study microbunching instability, see Fig. 1 (top
left). The amplitude of the initial modulation is A = 0.05
and the wavelength λ = 100μm. All the results shown here
are with Nz = 1024, Nx = 128 and N = 108 particles.
The number of cosine basis functions (highest order) in the
Fourier expansion is Ncx = 40 and Ncz = 100, which
determines the smallest structure representable by a finite
cosine approximation.

The argument of the highest order basis functions is

Ncxπx̄ =
Ncxπx

Lx
+ φx, Nczπz̄ =

Nczπz

Lz
+ φz , (1)

where φx and φz are constants (and therefore just simple
phase shifts). Therefore, the smallest wavelengths repre-
sentable by this expansion are

λmin, cos
x =

2Lx

Ncx
, λmin, cos

z =
2Lz

Ncz
, (2)

The cosine approximation will be able to accurately
approximate only particle distributions with small-scale
structure of wavelengths λ (of the order of the initial modu-
lation wavelength) larger than the smallest wavelength rep-
resentable by the cosine expansion λmin

z . This imposes a
limit on usability of the cosine expansion

λ̄ > λmin, cos
z =

2Lz

Ncz
, Ncz >

2Lz

λ̄
=

7200
λ

(3)

Figure 1 (top center) shows the accuracy in approximat-
ing the distribution. The relation (3) predicts that the pre-
cipitous drop in accuracy (increase in error) for the co-
sine approximation with M = 100 should occur for λ <
7200/Ncz = 72 which is exactly what is observed.

The smallest structure representable by a finite grid is de-
termined by the grid’s resolution. The smallest wavelength
representable on the grid is simply two spacings of the
grid (three gridpoints), describing the “saw-tooth” structure
λmin, grid

z = 2hz = 2Lz/Nz The smallest structure repre-
sentable on the grid is a simple “saw tooth”, which has a
lengthscale of 4 grid spacings. This means that the require-
ment for the accurate representation of the distribution on
the finite grid is then given by

λ̄ > λmin, grid
z =

4Lz

Nz
, Nz >

4Lz

λ̄
=

3600
λ

. (4)

For the simulations in Fig. 1 (top center), where Nz =
1024, the relation (4) predicts that for λ < 3600/Nz ≈ 14,
the grid approximation will be inaccurate, which is exactly
what is implied by the increase in the error of the grid ap-
proximation.

Therefore, the spatial resolution of the cosine expansion
is determined by the number of expansion coefficients N cx

and Ncz , while for the grid approximation it is given by the
number of gridpoints Nx and Nz .

Figure 1 (top center) shows the error E for the cosine,
regular grid and wavelet-denoised grid approximations as
a function of the number of particles N used in the simu-
lation. It is evident that the square of the L2-norm of the
error (E) for all three approximations scales as N −1, con-
sistent with the well-known finding that the signal quality
(as measured by the normalized inverse of the L2-norm of
the error, also known as the signal-to-noise ratio) scales as
N1/2 with the number of particles. It is also clear that the
wavelet-denoising significantly improves the accuracy of
the approximation, surpassing that of the cosine expansion.
The increase in accuracy when using the denoised grid ap-
proximation is even more pronounced for other values of
the modulation wavelength λ (see Fig. 1 (top center)).

Figure 1 (bottom left) shows a small part of the cross-
section of the particle distribution approximated with the
various schemes. It is visually evident that the wavelet
thresholding smoothens the small-scale noise present in the
gridded distribution, while maintaining high-fidelity signal.

Figure 1 (bottom center) shows how the execution times
of the different methods and their constituent parts scale
with the number of particles N . The Monte Carlo-based
computation of cosine coefficients requires integration over
N , therefore scaling as ∝ O(NcxNczN). Using cosine
coefficients to approximate the particle distribution on the
grid requires summing over all the cosine coefficients, thus
scaling as ∝ O(NcxNczNgrid). Since, in realistic simula-
tions, N � Ngrid, the computation of cosine coefficients
will be by far the most time-consuming of the two.

Both grid-based methods use particle deposition, which
scales as ∝ O(N), and a fast transform FCT and DWT
which scale as ∝ O(Ngrid log(Ngrid)) and ∝ O(MNgrid),
respectively, where M is the width of the wavelet family.
This means that for large N used in realistic simulations,
the most time-consuming part of the approximation is a
particle deposition (Fig. 1 (bottom center)). This is also
why the execution times of the grid methods become quite
similar for large N (Fig. 1 (bottom right)).

In Fig. 1 (bottom right), the three methods are directly
compared, by plotting the execution time for the two alter-
native methods scaled with the execution time of the Monte
Carlo cosine approximation as a function of N . It is evident
that the ratio of execution times asymptotically approaches
1/(NcxNcz), since Monte Carlo cosine ∝ O(NcxNczN)
and the grid-based methods (for large N used in realistic
simulations) as ∝ O(N).

An honest comparison of the efficiency of cosine expan-
sion and the wavelet-denoised grid expansion has to take

Proceedings of PAC09, Vancouver, BC, Canada TH5PFP043

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques 3297



-2 -1.5 -1 -0.5  0  0.5  1  1.5  2 -4
-3

-2
-1

 0
 1

 2
 3

 4
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

ρ(zn,xn)
    0.14
    0.12
     0.1

    0.08
    0.06
    0.04
    0.02

zn

xn

10-7

10-6

10-5

10-4

10-3

 0  100  200  300  400  500  600

E

λ [μm]

λz
min, grid

λz
min, cos

Monte Carlo cosine
grid

grid + FCT
grid + wavelets

10-6

10-5

10-4

10-3

10-2

105 106 107 108

E

N [number of particles]

Monte Carlo cosine
grid

grid + FCT
grid + wavelets

ρ(zn,0)

zn exact
grid

ρ(zn,0)

zn exact
grid + wavelets

ρ(zn,0)

zn exact
cosine

ρ(zn,0)

zn 10-3

10-2

10-1

1

10

102

103

104

105

105 106 107 108

t [
s]

N [number of particles]

Monte Carlo cosine
particle deposition

FCT + filtering
DFW + thresholding

10-4

10-3

10-2

10-1

105 106 107 108

t/t
M

C
 c

os
in

e

N [number of particles]

t/tMC cos = 1/(Ncx Ncz)

Alt. Method 1: FCT cosine
Alt. Method 2: wavelets    

Figure 1: Top left: normalized spatial density with flattop longitudinal profile [1]. Top center: accuracy of FFT-based cosine
expansion (red line), simple grid deposition (green line), grid-based truncated FCT (blue) and a wavelet-denoised grid deposition
(purple). Vertical lines denote minimal wavelengths representable with grid and cosine approximations (from left to right). Wavelet
family used is Daubechies of order 10. Top right: error E as a function of N for the approximations: Monte Carlo cosine (red); grid
(green), FCT on a grid (blue) and grid with wavelet denoising, using Daubechies wavelets of order 10 (purple). Bottom left: cross-
section (x = 0) of the approximations of the charged particle distribution on the grid, compared the the exact distribution: simple grid
deposition approximation (top left); wavelet-denoised grid deposition approximation (top right); cosine approximation (bottom left);
and all three superimposed. Wavelet family used is Daubechies of order 10. Bottom center: execution time of different approximations
and their parts, as a function of N . Wavelet family used is Daubechies of order 2. Bottom right: direct comparison of efficiency
of the three techniques: execution times of the two alternative techniques scaled with the execution time of the Monte Carlo cosine
approximation as a function of N . Horizontal red line denotes t/tMCcosine = 1/(NcxNcz), to which the ratios tend. Wavelet family
used is Daubechies of order 2.

into account the optimum number of basis functions in the
cosine expansion. The execution times for the computa-
tion of cosine coefficients and grid deposition methods is
given by tMC cos = k1NcxNczN , tgrid = k2N where k1

and k2 are some constants which depend on the computer
executing the simulation. Therefore, the ratio of the ex-
ecution times is simply r ≡ tMC cos/tgrid = kNcxNcz ,
where the constant k, and therefore the ratio r should
be computer-independent (as it can be seen from Fig. 1
(bottom right), it is quite close to unity). For the near-
optimal number of basis function in the cosine expansion
along the longitudinal direction N̄cz = 7200/λ, the ratio
is r̄ = kNcxN̄cz = kNcNczN̄cz/Ncz . From our earlier
analysis and Fig. 1 (bottom right), we get that for large N
and Ncz = 100, r ≈ NcxNcz (ignoring the contributions
from the cosine evaluation on the grid and wavelet denois-
ing, which are negligible for large N ) so r̄ ≈ 7200/λNcx,
which means that the cost-effectiveness of the wavelet-
based grid over the cosine expansion will be even more
pronounced for simulations of small-scale perturbations, as
expected. For example, this means that for Ncx = 40, the
increase in computational efficiency for λ < 100 should be
at least a factor 2880, and the double at λ < 50.

DISCUSSION AND CONCLUSION
We discussed approximation schemes for charged parti-

cle distributions with applications to beam dynamics. We

found that the wavelet method provides a superior alterna-
tive to the Monte Carlo cosine expansion currently in use in
[1] and to the fast cosine expansion. The new method de-
posits particles on a grid – an approximation to the charged
particle distribution which is intrinsically plagued by nu-
merical noise – and then uses wavelet thresholding to re-
move judiciously the noise. The resulting wavelet-based
grid approximation is appreciably more accurate – quanti-
fied by the square of the L2-norm of the error – and signif-
icantly more efficient (as measured by execution times) by
a factor of 5-150, than the Monte Carlo method.

In the future, it will be very beneficial to explore possi-
bilities of further optimizing the computational efficiency
of the new wavelet-based approach by exploiting the spar-
sity of the charge representation. Storing the entire history
of the charge distribution as a small set of sparse wavelet
coefficients instead of the full grid (2D in space and 1D in
time) could provide a substantial savings in memory and
processor communication, thus significantly reducing sim-
ulation times. This study is currently underway.
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