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Abstract 
The PASER [1] is one of the first advanced accelerator 

modeling applications that requires a more sophisticated 
treatment of dielectric and paramagnetic media properties 
than simply assuming a constant permittivity or 
permeability. So far the PASER medium has been 
described by a linear, frequency-dependent, single-
frequency, scalar dielectric function.  We have been 
developing algorithms to model the high frequency 
response of dispersive, active, and nonlinear media with 
an emphasis on areas most useful for PASER simulations. 
The work described also has applications for modeling of 
other electromagnetic problems involving realistic 
dielectric and magnetic media. Results to be reported 
include treatment of multiple Lorentz resonances based on 
auxiliary differential equation, Fourier, and hybrid 
approaches. 

INTRODUCTION 
While L-band superconducting rf will be the 

technology base for the International Linear Collider, 
there is still a need for the development of new 
acceleration methods. Smaller research linacs, next 
generation light sources and heavy ion accelerators would 
benefit from a new compact and inexpensive accelerating 
device.  While work in the area of accelerating structures 
loaded with dielectric media [2, 3] has been pioneered at 
Argonne, so far this effort has focused on the use of 
dielectric slow-wave structures in which the dielectric 
plays an entirely passive role. Primarily computational 
work on a class of dielectric laser-driven microstructures 
co-developed by the ANL group has also resulted in 
advances in the understanding of laser-based acceleration 
[4].  

There has been a considerable amount of interest and 
effort in acceleration methods that involve transfer of 
energy directly from a gain medium (one in which a 
population inversion has been generated) to a charged 
particle beam. Accelerators based on this idea have the 
potential to provide accelerating gradients in excess of 1 
GeV/m. The effect is similar to the action of a maser or 
laser with the stimulated emission of radiation being 
produced by the interaction of the electromagnetic field of 
the beam with the medium. While the PASER effect has 
been studied theoretically there has so far been only one 
experiment in this area and no numerical simulations that 
take the detailed properties of the medium into account.  
This proposal will lead to both an improved conceptual 
understanding of the PASER through the development of  
 

 

Figure 1: Effect of media anisotropy on wakefields in a 
dielectric structure. Red: constant transverse component 
of permittivity = 6.0, axial component varying. Green: 
constant axial component, transverse component varying. 
Blue: isotropic case, both axial and transverse 
components varied. 

sophisticated and physically realistic numerical models of 
the effect and also to new experimental demonstrations of 
particle acceleration by an active medium.  

There are a number of possible implementations of 
active media devices for particle acceleration. The first 
involves acceleration of a single bunch by the bulk active 
medium (the basic PASER concept) without the use of a 
resonant structure. A second related technique would load 
the active medium in a resonant structure, similar to the 
dielectric wakefield accelerator [2], with the fundamental 
resonant frequency of the structure adjusted to correspond 
to the frequency of the lasing transition. The device could 
then be used to amplify the wakefield of a drive beam for 
acceleration of a trailing witness beam. Yet another 
approach is to use the active medium, loaded into a 
resonant cavity of the appropriate frequency and with 
appropriate optical pumping as an rf power source to 
drive a conventional iris-loaded or dielectric structure 
directly.  

ANISOTROPY AND NONLINEARITY 
We have used the FDTD code Arrakis [6] to investigate 

electromagnetic fields in anisotropic and nonlinear 
dielectric structures. The Lax-Wendroff algorithm is 
specially suited for handling nonlinear problems.  

We first consider the case of a simple nondispersive 
anisotropy in a dielectric wakefield structure. Since we 
are considering a 2D system only, the permittivity tensor 

has the form 
0
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. The dimensions of the device 

are a=1cm, b=.5 cm. The fundamental TM01 frequency for 
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an isotropic ε=6 is 7.1 GHz. Fig.1 shows a comparison of 
the peak axial electric field for a fixed bunch length for 
three cases (εT = const., εL = const., εT = εL). A significant 
difference (enhancement of the accelerating field by 
~30%) is observed between the isotropic and anisotropic 
cases.  
Arrakis has also been used to model nonlinear media. In 
ref. [12] the case of a weak quadratic nonlinearity of the 

form
2

1 2
max

( ) (1 )
2

tED E E
E

= −ε with t = 0.1 the fractional 

change in the permittivity at maxE E= . We modeled a 
beam-excited cylindrical resonator loaded with this 
material. The the nonlinearity produced a phase shift and 
amplitude enhancement in the wake potential over what 
would be expected in the linear case, and the creation of 
higher frequency Fourier components. 

DISPERSIVE AND ACTIVE MEDIA 
In the context of our work on developing a microwave 

PASER [7], we have been investigating algorithms for 
modeling a medium with a complex frequency dependent 
permeability in a finite difference time domain (FDTD) 
framework using the auxiliary differential equation 
(ADE) method [5]. (The approach for a dielectric medium 
is completely analogous.) An active medium is one in 
which the imaginary part of the susceptibility ′′χ  is 
negative. 

The paramagnetic medium is assumed to be optically 
pumped to create a population inversion. The relationship 
between the magnetic susceptibility ′′χ  and the spin 
density nΔ  achieved in the population inversion is given 

by  2
0

1[ ( 1) ( 1)] ( )
8

J J M M ng f f′′ = + − + Δ −hχ γ  [8]. 

In the case of an active medium nΔ and hence ′′χ are 
negative; consequently an electromagnetic wave 
traversing the medium gains energy. We assume that J=1, 
M=0 (corresponding to an M=1→0 transition). 

0( )g f f− is the line shape function.  
Depletion of the energy in the inversion by stimulated 

or spontaneous emission is not accounted for in this 
model; nΔ  is assumed to remain constant. 

We begin by assuming the following Lorentz form for 
the complex permeability of an active paramagnetic 
medium [9]: 
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with 2
2
nΔκ ≡ γh , γ is the gyromagnetic ratio. ω0 is the 

frequency of the maser transition line and σ is a quantity 
related to the width of the line.  

We want to be able to apply this relation between B and 
H in a time domain finite difference code. We write 
B( ) ( )H( )ω = μ ω ω and following Taflove [5], convert 
this to a time domain ordinary differential equation by 

applying the Fourier transform relation di
dt

− ω →  to Eq. 

(1).  
Usually only the imaginary part of the ε or μ is modeled 

in this approach to provide an effective frequency 
dependent conductivity for the medium. We have treated 
both the real and imaginary parts of the permittivity 
simultaneously to compute dispersion effects as well. 

After clearing the denominators, the auxiliary 
differential equation (ADE) for the constitutive relation 
then becomes 

0

2 2
2 2

02 2

d B dB d H dH+ +  B(t) = +  + ( +4 ) H(t) 
dt dt  dt dt

σ ω σ ω πκ ( 2 ) 

In the following analysis we suppress the spatial indices 
for the B and H fields. tΔ is the time step size. We need 
to solve for H(t) in terms of the B and H fields at previous 
time steps and B at the present time. Expanding the fields 
in a Taylor series around t- tΔ  and requiring that H 
satisfies the ADE (2) to second order in time we obtain  

  
2 2
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k k
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The coefficients ak and bk that make the expression 
correct to second order are 
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Implementation of this algorithm requires additional 
memory for backstorage of the H and B fields at previous 
timesteps. By reuse and overwriting of arrays only four 
additional arrays of size(H) are required. The algorithm 
was debugged by first implementing it in a 1D Matlab 
code.  

The algorithm was then implemented in the FDTD code 
Arrakis [6]. The algorithm used for the field advance in 
Arrakis is actually a two-step Lax-Wendroff rather than 
the more usual Yee algorithm. The only additional 
complication is the need to apply our algorithm twice on 
each time step, once for the predictor step and once for the 
corrector. After the B field is advanced in time according 
to Faraday’s law, the H field is needed to advance E 
through Ampere’s law. Eq. (3), a discretized version of 
Eq. (2) is used in each mesh cell containing the active 
medium to obtain H(B).  

We are also interested in media with multiple 
resonances. The presence of two close transition lines 
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(one absorbing and one emitting) inferred from this 
spectrum are common to all the optically pumped active 
paramagnetic media that are being used in the Euclid 
experiments [10].  This suggests the use of a 
phenomenological two resonance Lorentz model,  

1 2
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( , , ) ( , , )D D

⎡ ⎤
= +⎢ ⎥
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κ κχ ω π
ω ω σ ω ω σ
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where '' Imχ μ=  to provide a more accurate description 
of the susceptibility. Results of a least squares fit to this 
model are also plotted. The model provides a reasonable 
approximation to the data in this case; some of the 
deviations are due to additional resonances caused by the 
fullerene component alone.  

As before, we apply the transformation di
dt

→ −ω  to the 

expression for the complex permittivity. Adapting the 
ADE technique to the two pole model is straightforward. 
For each mesh cell jkl containing the active medium we 
obtain the 4th order ordinary differential equation 

1 2 1 2 1 2 2 1( ) ( 4 4 ) ( )jkl jklD D B t D D D D H t= + +πκ πκ , where  
2

2
2( )m m m

d dD
dtdt

≡ + −ω σ . 

This is then discretized to obtain an expression for Hn in 
terms of Hn-1, Hn-2, Bn, Bn-1, Bn-2   that is correct to second 
order in time (n is the discrete time index). The algorithm 
requires an extra 6 words of storage for each cell although 
it may be possible to reduce this further.  

Adding an additional resonance term to Eq. (6) 
increases the order of the auxiliary differential equation 
from 4 to 6, problematic both in terms of backstorage and 
stability of the algorithm. One possible approach is to find 
a different parameterization of the susceptibility that 
exhibits good agreement with the measurements but leads 
to a lower order ADE.  

A less computationally and memory intensive 
approximate algorithm can be obtained by ignoring the 
cross terms in the expansion of (6), i.e. by treating the 
medium as consisting of two independent Lorentz 
components. The discretized ADE (3) is applied to the 
medium-containing mesh cells in a “checkerboard” 
pattern, alternating the coefficients corresponding to the 
parameters of the two resonances. 

An alternative to the ADE algorithm is based on the use 
of the Fast Fourier Transform. In rough outline the 
Fourier algorithm is as follows: Consider the frequency 
domain constitutive relation D( ) ( )E( )ω = ε ω ω , where 
the functional form of the permittivity is known. Using a 
time domain algorithm, we can obtain the needed Fourier 
components of E at timestep tn by storing a time history of 
the field in each dielectric mesh cell and computing 

~
n jFFT [ E( t )] E( )= ω .  Then  

1
~

n j j
j

D( t ) FFT [ ( )E( )]−= ε ω ω∑ . 

This approach requires more backstorage than the ADE 
method, but unlike the ADE approach (where the order of 
the ODE to be solved increases with each added 
resonance) the required memory does not increase with 
the number of resonances. 

An equivalent approach [5] is to notice that the 
constitutive relation can be written as a convolution 

0

t
D( t ) ( )E( t )d

τ=
= ε τ − τ τ∫ . Here ( t )ε  is the inverse 

Fourier transform of the frequency dependent 
permittivity. For certain functional forms of the 
permittivity and permeability (including Lorentz) the 
convolution can be reduced to a simple running 
summation in each media-containing mesh cell.  

SUMMARY 
The primary goal of this research is the development of 

algorithms for modeling the high frequency and optical 
properties of dielectric and paramagnetic materials with 
an emphasis on problems relevant to the PASER. The 
applicability of this work however is not limited to 
PASER related problems. One example is the expanding 
research area of metamaterials [11]. Numerical modeling 
of systems involving bulk metamaterials requires the 
accurate handling of dispersive permittivities and 
permeabilities. 
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