
GRAPHICAL FRONT-END AND OBJECT-ORIENTED DESIGN FOR
IONEX, AN ION EXTRACTION MODELING CODE*

L. Grubert, N. Barov, B. Cluggish, S. Galkin, J.S. Kim, FAR-TECH, Inc., San Diego, CA, U.S.A.

Abstract
IonEx is a new hybrid, meshless, cross-platform, 2D

code which can model the extraction of ions from a
plasma device. The application includes a user-friendly
Graphical User Interface (GUI), which will contain a
geometry editor for specifying the domain. The design of
IonEx utilizes the object-oriented functionality of C++,
which provides an efficient means of incorporating
magnetic fields, an arbitrary geometry, and multiple ion
species into a simulation. Visualization of the resulting
trajectories and emittances is accomplished through the
GUI; openGL is used to accelerate the graphics. In this
paper we will briefly review the physics and
computational methods used, highlight important aspects
of the object-oriented design, discuss the primary features
of the GUI, describe the current status of IonEx, and
present some simulation results.

ION EXTRACTION MODELING
The IonEx code was designed to model the extraction

of ions from the plasma in an Electron Cyclotron
Resonance Ion Source (ECRIS). This section provides a
brief review of the physical model and computational
methods used; for more details see [1,4].

Physical Model
IonEx uses a hybrid model which describes the ions as

particles and the electrons as a massless Boltzmann fluid.
The magnetic field is given; the electrostatic field is
solved for self-consistently. Each iteration includes
solving for the electrostatic field, a particle-pushing step,
and the re-distribution of charge from the particles to the
computational points. For the particle-pushing step, we
treat the ions as macroparticles and solve the equations of
motion:

)(/

/

����

��

×+=
=

ssss

ss

qdtdm

dtd

where rs, vs, ms, and qs denote, respectively, the r-
coordinate, velocity, mass, and charge of the s-th
macroparticle, and E and B give the value of the
electrostatic and magnetic fields at the particle’s location.
To solve for the electrostatic field, Poisson’s equation
(with Boltzmann electron term) is used, where ρi and ρe
are the ion and electron charge densities; ρ0 and Φ0 are
the ion charge density and potential in the plasma; and ε0

is the permittivity of free space:

Computational Methods Used
The IonEx code uses the Particle-in-Cloud-of-Points

(PICOP) Method [1]. The PICOP method is similar to the
Particle-in-Cell (PIC) Method, but the domain is
represented by a cloud of points instead of a mesh. It is
an adaptive meshless method, with point adaptation
taking place after a specified number of particle-pushing
iterations. The IonEx code includes a point generator
which is responsible for creating and adapting points
according to a monitor function based on the current
solution.

Within the PICOP framework, standard numerical
methods are utilized for solving the sparse matrix
equation and the Ordinary Differential Equation (ODE).
Both Gauss-Seidel and Newton’s method are used to
solve Poisson’s equation. The equations of particle
motion are computed using a fourth-order Runge-Kutta
scheme with an adaptive time step. These methods are
programmed into the code using object-oriented design
techniques.

OBJECT-ORIENTED DESIGN
The programming behind IonEx is guided by the

principles of object-oriented design [5]. Objects are
implemented as classes in C++. Encapsulation is used to
hide the details of functions within those classes. This
greatly increases the code’s re-usability and makes it easy
to maintain. Classes support both the GUI and the
computational code. Here, we will discuss only the
classes used for the simulation part of the code.

The primary objects involved in the simulation are the
field solver, point generator, particles, and IonEx driver
classes. The driver is the interface between the
computational code and any other object (such as the
GUI) which needs to run an ion extraction simulation.
The particles class is responsible for the particle-pushing
part of the code. The point generator creates and adapts
the points. The field solver handles the set-up and solving
of Poisson’s equation.

These primary classes utilize several supporting
classes. We will discuss a few of these with a bit more
detail: the ion species, magnetic field, and ODE solver
classes (supporting the particles class); and the geometry
and boundary condition classes (primarily supporting the
field solver and point generator).

The ion species class contains information specific to
each species, such as its atomic mass, charge state, and
initial energy and velocity in the z-direction.
Additionally, through the GUI, a user can assign a name
and color to each species, for easy identification. The

0

00

0

)/)(exp(

ε
φφρρ

ε
ρρφ eiei Te −−−=+−=Δ

*Work supported by US DOE SBIR program (Nuclear Physics Division)

TH5PFP053 Proceedings of PAC09, Vancouver, BC, Canada

3324

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques

particles class stores an array of instances of the ion
species class, one for each species. We can then simply
loop through the array to handle any calculations which
are specific to one species.

The magnetic field class is responsible for providing
the magnetic field components at any particular position
in the domain. The B-field can be stored in a variety of
different formats within this class: described by a
polynomial, specified along the z-axis, or prescribed at
points throughout the domain.

The ODE solver is a far more complicated object than
either the magnetic field or ion species class. This is
because at every time step of the solve, communication
with several other classes is required. To solve the
equations of motion for the macroparticles, the ODE
solver needs to have access to the electrostatic field, the
magnetic field, the domain geometry, and various
functions within other classes. The solution implemented
in IonEx is to have a base ODE solver class. By
inheriting from this base class, we can pass arbitrary data
to the ODE solver and implement the problem-specific
calculations required within the solver. This also gives us
the ability to easily replace the core ODE-solving method
with another one.

The IonEx code is able to run a simulation with an
arbitrary geometry, by the generalized geometry and
boundary condition classes. The geometry class contains
a description of the boundary of the domain, including
information required to re-construct curves. It handles
such operations as computing the domain volume,
correctly adding points on the boundary (during
refinement), and determining whether a given point is
inside or outside the domain. The base boundary
condition class is used to derive the Dirichlet and
Neumann classes. These classes assist with estimating
the coefficients of the Laplacian matrix and setting up the
right-hand side for the Poisson solve.

GRAPHICAL USER INTERFACE
IonEx has a Graphical User Interface which allows the

user to specify the domain, setup the simulation
parameters, run the simulation, and visualize the results.
The GUI was created using Qt, which is a C++
application development framework for creating cross-
platform GUI applications [2].

Currently, the domain is specified through a text input
file. This will be replaced by an interactive geometry
editor which allows the user to construct the domain
boundary in a manner similar to a Computer-Aided
Design (CAD) program. Drawing tools will be available
for a canvas, and the ability to graphically assign
boundary conditions to the boundary elements will be
provided. An expression evaluator will also be included,
which allows the user to create and evaluate numeric
expressions.

The GUI also provides a user-friendly means of setting
up the simulation parameters. The parameters can either
be imported from a text file or entered through dialogs.
The values given for the input parameters are displayed in

a tree on the left panel. Interaction with the tree allows
the user to edit or delete particular items in the tree.

Figure 1: IonEx Screenshot.

Once the simulation parameters and boundary

geometry have been specified, the simulation can be run
from the GUI. It runs in a separate thread to keep the
GUI active (since the code is computationally intensive).
As the simulation runs, trajectory plots and status updates
are displayed; this communication between the
computational code and the GUI is accomplished through
the use of Qt’s signal/slot mechanisms. The simulation
can be aborted at any time. An output file containing
particle positions, velocities, etc. is generated when the
simulation ends.

After the simulation ends (or is aborted), the user can
view multiple plots of the domain (computational points
and boundary conditions), emittance (at a specified z-
value), and particle trajectories (as an overlay on a
contour plot of the electrostatic field). Right-clicking on
a plot brings up menu options which allow the user to
change the ion species or the z-value for that plot. The
plots are individual windows within a Multiple Document
Interface (MDI) area, which is the central widget for the
application. This gives the user complete control over the
number, size, and arrangement of plots. The graphics
used in the plots are the result of combining openGL [3]
and the Qt Painter class. OpenGL handles the more
computationally expensive operations, such as generating
the contour plot, while Painter is used to add axes labels.

STATUS OF IONEX
Many improvements have been made to IonEx in

recent months. The entire computational code has been
successfully ported to c++ (in preparation for
distribution). A Graphical User Interface has been added,
which includes the ability to enter simulation parameters,

Proceedings of PAC09, Vancouver, BC, Canada TH5PFP053

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques 3325

run the simulation, and display the results. The code now
includes the effects of the magnetic field and the ability to
run multiple-species simulations. The point generator has
been incorporated, and a more general geometry can now
be used. The code has been compiled and tested under
both Windows and Linux.

Some additional work remains for this project. The
geometry editor is not yet included in the application, and
more GUI features need to be added to give the user more
control during the post-processing phase. Future plans
include linking IonEx with the rest of the suite of ECR
Ion Source simulation codes that FAR-TECH is
developing: MCBC (Monte-Carlo Beam Capture) and
GEM (Generalized ECRIS plasma Modeling). IonEx will
also be ported to the Mac. The 3D version of IonEx will
be completed.

SIMULATION RESULTS
This section presents the results obtained by running an

ion extraction simulation using He+1 and He+2 with
equal current and a nearly uniform magnetic field. The
input parameters are given below.

 Table 1: Input Parameters for IonEx

Input Parameter Value

Electron Density 2e16 m-3

Electron Temperature 100 eV

Initial Ion Energy 100 eV

Species He+1 and He+2

Number of particles tracked 200 of each species

Maximum Magnetic Field 1 T

Extraction Voltage 60 kV

Figure 2 shows the emittance plots for each species. In

Figure 3, the trajectories (with both species together) are
displayed. The potential is also plotted behind the
trajectories.

Figure 2: Emittance Plots.

Figure 3: Trajectory and Equipotential Plot.

Table 2 displays the extracted beam parameters at the

extraction end of the domain (at z = 1.85cm). The root
mean square of the radius (R), energy (E), and emittance
is given for each species.

 Table 2: Extracted Beam Parameters

 He+1 He+2

Rrms(mm) 1.29 1.48

Erms(keV) [Total] 57.2 114

Erms(keV) [Transverse] 1.21 2.51

2D emittance (micron) 19.9 24.7

REFERENCES
[1] S. Galkin, B. Cluggish, J.S. Kim, and S. Medvedev,

“Advanced PICOP Algorithm with Adaptive
Meshless Field Solver,” Proc. Pulsed Power and
Plasma Science Conference, 2007.

[2] J. Blanchette and M. Summerfield, “C++ GUI
Programming with Qt 4,” Prentice Hall, 2008.

[3] M. Woo, J. Neider, T. Davis, and D. Shreiner,
“OpenGL Programming Guide,” Addison Wesley,
1999.

[4] B. Cluggish, S. Galkin, J.S. Kim, “Modeling Ion
Extraction from an ECR Ion Source,” Proc. Particle
Accelerator Conference, 2007.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison-Wesley Professional
Computing Series, 1995.

x (mm)

v x/v
z (m

ra
d)

He+1

-1.5 -1 -0.5 0 0.5 1 1.5

-150

-100

-50

0

50

100

150

x (mm)

v x/v
z (

m
ra

d)

He+2

-1.5 -1 -0.5 0 0.5 1 1.5

-150

-100

-50

0

50

100

150

He+2 He+1

TH5PFP053 Proceedings of PAC09, Vancouver, BC, Canada

3326

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques

