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Abstract

The first full size superconducting dipole magnets for
the SIS 100 Tm synchrotron were built and tested. The
achieved magnetic field has been measured with a rotating
coil probe.

An intensive Finite Element R&D, necessitated by the
used superconducting cable as well as by the complex me-
chanical coil and yoke structure, allows calculating the field
with high accuracy.

Elliptic multipoles were used to describe the field within
the whole aperture of the vacuum chamber. As the final
design for the SIS 100 dipoles is curved, we developed
toroidal multipoles describing the field within a curved
magnet, and enabling us to interpret the measurement of
a rotating coil probe within such magnets.

We describe the performance of the magnetic measure-
ment system, present the measured field properties and
compare them to the calculated ones.

INTRODUCTION

The SIS 100 synchrotron, the core component of the Fa-
cility for Antiproton and Ion Research, will be the world’s
second machine using fast ramped superconducting mag-
nets. The magnets use a Nuclotron cable (i.e. a hollow
tube cooled by forced two phase helium flow with super-
conducting wires wrapped around this tube). The mag-
netic field quality is dominated by the iron field. During
the R&D phase we have been developing the theory to de-
scribe the magnetic field within elliptic apertures [1, 2] as
well as for curved magnets [3] next to test calculations and
studies on FEM codes [4] as well as building a magnetic
measurement system [5] for such magnets. First full size
prototype magnets have been built and the first one already
tested [6]. In this paper we compare the calculated field
quality next to the measured one.
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THEORY

Elliptic Multipoles

The field within the elliptic beam aperture is described
using elliptic multipoles for elliptic coordinates of the type
x = e coshη cosψ, y = e sinh η sinψ with x and y the
Cartesian coordinates and η and ψ the elliptic coordinates
with 0 ≤ η ≤ η0 < ∞ and −π ≤ ψ ≤ π. The field
B := By + iBx can be described within the whole ellipse
using

B(η, ψ) =
M∑

q=0

Eq cosh[q(η + iψ)]/ cosh(qη0), (1)

with η0 = tanh−1(b/a) the reference ellipse and a and b
its half axes [1, 2] (here a = 45mm and b = 17mm).
These Eq can be recalculated to circular multipoles

B(z) = Bm

M∑

n=1

cn (z/R0)n−1 (2)

using an analytic linear transformation, with Bm the main
field, z = x + i y, R0 the reference radius and cn =
bn + i an the relative higher order circular multipoles. The
bn’s and an’s are dimensionless constants. In this paper
they are given in units i.e. 1 unit = 100 ppm at a R0 of
40mm. Using (2) the field can be interpolated with suffi-
cient accuracy within an ellipse with half axes a, b.

Toroidal Multipoles

In the gap of a curved magnet a torus segment (−ϕ0 ≤
ϕ ≤ ϕ0) is used as reference volume. Dimensionless local
toroidal coordinates ρ, ϑ, ϕ are defined by

X + iY = Rc h e
iϕ, Z = RRef sinϑ, h = 1 + ερ cosϑ,

with RRef (Rc) the minor (major) radii of the torus and
ε := RRef/Rc < 1 the inverse aspect ratio describing the
magnitude of the curvature effects. The centre of the fun-
damental Cartesian system (X,Y, Z) coincides with that of
the torus, Z is normal to the equatorial plane. The quasi-
radius ρ · RRef , 0 ≤ ρ ≤ 1, is the normal distance of the
field point from the centre circleZ = 0,

√
X2 + Y 2 = Rc;

the poloidal angle −π ≤ ϑ ≤ π, is around the centre circle;

 MULTIPOLES
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the toroidal angle −π ≤ ϕ ≤ π agrees with the common
azimuth. Only toroidally uniform fields are considered;
their field components Bx, By are confined to the planes
ϕ = const. and are independent of ϕ. (x, y) are local Carte-
sian coordinates in these planes; the x−, (y−) axes are
parallel to the X−, (Z−) axes. The potential equation for
toroidally uniform fields is (neglecting a constant factor)

[
∂2

∂ρ2 + 1
ρ
∂
∂ρ + 1

ρ2
∂2

∂ϑ2 + ε
h

(
cosϑ ∂Φ

∂ρ − sin ϑ
ρ

∂Φ
∂ϑ

)]
Φ

= h−1/2
[
∂2

∂ρ2 + 1
ρ
∂
∂ρ + 1

ρ2
∂2

∂ϑ2 + ε2

h2

] (
h1/2 Φ

)
= 0, (3)

with the terms in the square brackets the Laplacian in plane
polar coordinates ρ, ϑ. The last term, due to the curva-
ture, introduces contributions which may be represented as
a power series in the inverse aspect ratio ε. Approximate
toroidal multipoles accurate to order ε can be obtained by
(see second line):

Φm(ρ, ϑ) = h−1/2 ρ|m| eimϑ +O(ε2), (4)

≈ ρ|m| eimϑ − ε
4 ρ

|m|+1
(
ei(m+1)ϑ + ei(m−1)ϑ

)
.

Φ̄m(x, y) ≈ zs|m| − ε

4

[
zs|m|+1 + zs2 zs|m|−1

]
. (5)

with zs = z/R0 = x+ iy/R0 = ρ eiϑ. The multipoles are
orthogonal w.r.t. the scalar product

(
Φm,Φk

)
:=

∫ π

−π
Φ∗
m(ρ, ϑ)Φk(ρ, ϑ) h dϑ = [ρ|m|]2 2π δmk.

The expansion coefficients τm of a given potential

Φ(ρ, ϑ) =
∞∑

m=−∞
τm Φm(ρ, ϑ) (6)

are defined by the values given along the reference circle
ρ = 1:

τm =
1
2π

(
Φm(1, ϑ),Φ(1, ϑ)

)
(7)

This theory can be expanded to vector fields (required
e.g. to interpret rotating coil measurements in a curved
magnet) [7].

MAGNETIC FIELD

Measurement method
The magnetic field was measured with a “Mole”, i.e.

a rotating coil probe system with all auxiliary equipment
working in the magnetic field [5]. The rotating coil probe
is equipped with dipole compensation windings and thus
allows to measure the magnetic field homogeneity with a
higher accuracy than the main field. The field was now
measured at different lateral positions (x = ±3, 0 cm.) (see
Fig. 2). The higher accuracy of the field homogeneity mea-
surement allows correcting the relative measurement error
of Cl,r

1 minimising the offset between both measurements
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Figure 2: The gap of the measured magnet as well as the
measurement positions of the coil probe. black filled cir-
cles — coil windings, dashed centre circle, dashed dotted
circle xm = ± 3.0 cm, coil probe measurement positions,
solid line — ellipse used in reconstruction, dot on the el-
lipse – angle ψc, solid vertical lines – minimization lines.

along the overlap (vertical lines Fig. 2) using the adjust-
ment function

Cm = (1 + g/10000) C̄m exp (imβ) (8)

with g correcting the integrator gain or the longitudinal coil
positioning precision (end field measurements) and β the
field direction uncertainty. g was typically 5 for the central
field, 20 for the end field, β typically below 1 mrad and
thus the adjustments fit well with measurement precision
of the used system. The data on the ellipse (a = 4.5 cm, b =
1.7 cm) were reconstructed using

Bi(z) = λ

Mm∑

m= 0

Cc
m

(
z
Rm

)m−1

+(1−λ)
Mm∑

m=0

Cl,r
m

(
z − xm
Rm

)m−1

with Mm = 10 and defining λ by

λ(p0) = 0 λ(p1) = 1 λ′(p0, p1) = 0 λ(p) = 3p2−2p3

with

p =

{
0 ψ′ < p0
2ψ′−π
2p0−π p0 ≤ ψ′ ≤ π.

with ψ‘ = ψ for the first π−ψ for the second, ψ−π for the
third and ψ−2π for the forth quadrant [1, 2]. λ models the
weight of each measurement with respect to the other with
the free parameter ψc, which is chosen such that λ(p(ψ))
reassembles the weight (i.e. the inverse accuracy) of each
measurement assuming that its given by Rm/(z − x0) [2].
Based on the field reconstructed on the ellipse, elliptic mul-
tipoles eq. (1) and, using the transformation matrix [1, 2],
circular multipoles eq. (2) were calculated.

DC field
The static field was calculated using TOSCA in 3D [8]

and using ANSYS in the central region of the magnet [9].
The calculated and measured transfer function tf = B0/I
with I the current is given in Fig. 1(a).

One can see that the calculated is slightly higher than the
measured one. Further the iron non linearity at low fields
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(b) centre, b3
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(c) centre, b5
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(d) centre, b7
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(e) end, b2
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(f) end, b3
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(g) end, b5
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Figure 1: The measured (solid line) and calculated transfer function and harmonics versus the main field. centre: black
– measured, yellow – TOSCA, green – ANSYS. end: connection side blue – measured, cyan – TOSCA; non connection
side: red – measured, mangenta – TOSCA.

is not reproduced. For the central field the calculated satu-
ration effect is nicely reproduced for b3 and b7 but not for
b5 (see Fig. 1(b) - 1(d)). For the end field, measured with
the centre of the 60 cm long coil probe at z = ±120 cm,
one can see that the measured multipoles have a similar
shape as the calculated ones but with a constant offset (see
Fig. 1(f) - 1(h)). b3 shows a deviation at low field similar
to the deviation of the transfer function at low field.

CONCLUSION

The first SIS 100 full size dipole magnet has been built,
and its field quality calculated as well as measured. The
calculated transfer function, using catalog data for room
temperature, is ≈ 1 % higher than the measured one as well
as the calculated data do not show the nonlinearity at injec-
tion. The higher order multipoles were given for the central
field next to the end field. The curves agree quite well in
shape but have an offset as well as different behaviour at
low field where the permeability curve does not take the
remanence into account. Still the calculated results are of
good quality and agree well with the measurements. Us-
ing a bigger coil probe as well as readjusting the hysteresis
curve using the measured data we are confident to further
increase the quality of the prediction.
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