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Abstract 
Based on TE/TM splitting algorithm a new (longitudinally) 

dispersion-free numerical scheme is developed to evaluate the 
wake fields in structures with finite wall conductivity. The 
impedance boundary condition in this scheme is modelled by 
one dimensional wire connected to boundary cells. A good 
agreement of the numerical simulations with the analytical 
results is obtained. The developed code allows to calculate 
multipole wake potentials of arbitrary shaped rotationally 
symmetric geometries with walls of finite high conductivity. 

INTRODUCTION 
The achievement and preservation of the very small 

electron beam emittance with high peak current is one of 
the most actual challenges in modern accelerator for 
fundamental and applied sciences to reach the design 
goals of the projected facilities [1,2]. The physics of high 
energy small emittance electron beams is basically 
dominated by the interaction of the beam with 
surrounding structure through the excited electromagnetic 
fields [3].  These fields, known as wake fields, have in 
general the transverse and longitudinal components, 
which produce the transverse kick and extra voltage for 
the trailing charges in the beam. The analytical solutions 
for the wake fields are available for the structure with 
relatively simple geometry [4,5]. 

The real structure, that can include cavities, transitions, 
collimators, bellows etc, in general has a complicated 
geometry and is composed of resistive material.  Various 
Maxwell grid equation (MGE) based numerical codes 
have been developed to solve the 2D and 3D wake field 
problems in frequency and time domains [6-7] but usually 
without resistive wall losses. From existing numerical 
codes only CST Microwave Studio [8] can model 
structures with finite resistivity but the algorithm suffers 
from the numerical dispersion. To prevent the numerical 
dispersion in longitudinal direction, the dispersion-free 
numerical scheme is proposed, for example, in [9, 10]. 
Based on it a new (longitudinally) dispersion-free 
algorithm is developed to evaluate the monopole wake 
fields in structures with finite wall conductivity which 
was presented in EPAC08 conference [11]. In this paper 
we present the extended dispersion free algorithm for 
multipole wake field calculation.  The impedance 
boundary condition in this scheme is modelled by one 
dimensional wires connected to boundary cells, as in 
monopole algorithm. A good agreement of the numerical 
simulations with the analytical results is obtained. The 
developed code allows to calculate wake fields of 
arbitrary shaped rotationally symmetric geometries with 
walls of finite high conductivity.  

 

FORMULATION OF THE PROBLEM 
Consider the ultrarelativestic charged particle bunch 

with longitudinal distribution ρ , moving along the 
azimuthally symmetric structure with the speed of light c  
(Fig.1). The internal region of the structure Ω  is bounded 
by the resistive infinite wall with conductivity κ . The 
problem is to calculate the electromagnetic fields ,E H

r r
 

induced by the bunch and reads as 
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The current density is b cj j j= +
r r r

, where bj cρ=
r r is the 

charge current and  cj Eκ=
rr

 the current induced in the 
wall. The boundary conditions for electromagnetic fields 
are given by the continuity of tangential components of 
electric and magnetic fields on the boundary between the 
vacuum and the wall. In accelerator applications, the 
studied structure is usually supplied by ingoing pipe and 
the well known analytical solution for ultra-relativistic 
beam in a perfectly conducting cylindrical pipe [4] can be 
used as initial field. 

For conductor the physical model described in paper 
[11] is used. Hence, in media with high conductivity only 
tangential components of the fields should be taken into 
account and they have to be coupled to the full three 
dimensional field in vacuum. In vacuum the full three 
dimensional grid space is used. Propagation of the 
tangential component of the field in the conducting media 
on each boundary cell with conductor is described by one 
dimensional (1D) set of Maxwell’s equations. The 
numerical algorithm based on this model is given in the 
next section. 

A SCHEME WITH CONDUCTIVITY 
  In this section we describe an implicit algorithm for 
multipole electromagnetic fields computation that 

 
  
 
 
 
 
 

 
includes the boundaries with finite conductivity. We 
introduce a local coordinate system connected to the 
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Figure 1: Boundary local coordinate system. 
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boundary { p , ϕ , s } Fig.1. The propagation of the 
tangential field in the conductor is described by two 
decoupled 1D electromagnetic problems: one for the 
{ peh ))

,ϕ } components and the second for { ϕehp
))

, }. The 
excitation source of EM field in conducting media is the 
tangential magnetic field in boundary cell. Following the 
matrix notation of the finite integration technique [12] the 
implicit 1D scheme for each pair of the electromagnetic 
field components { peh ))

,ϕ } and { ϕehp
))

, } will be read as 
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The two-banded matrix sP  plays the role of discrete 
differential operator. The matrices A and B are diagonal 
with entries 
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In local coordinate system the tangential component of 
magnetic field in vacuum will read  

             pvacuumpvacuumvacuum ihihh
r)r)r)

,,, += ϕϕτ                  (4) 

The tangential magnetic field vacuumph ,
)

 can be found via 
interpolation of radial and longitudinal components of 
magnetic field into the centre of boundary cell and its 
projection on tangential vector pi

r
. Hence the boundary 

conditions at the interface for 1D electromagnetic 
problems will reads vacuumhh ,0, ϕϕ

))
=  and vacuumpp hh ,0,

))
= . 

     Explicit and implicit dispersion free schemes with 
perfect boundary conditions are introduced in paper [10]. 
Using the same notations the implicit hybrid scheme with 
finite conductive boundaries will be read 

[ ]
[ ]5.05.05.0#

5.05.05.0#

1

1

2

2
−−−

−−−

++−Δ+=

+−Δ+=

−

−

n
c

n
z

n
z

n
rr

n
cp

n
zr

n
rz

n

eemePMhh

eePePMhh

r
ϕϕμ

μϕϕ

τ

τ
ϕ

)))))

)))))

 

[ ]n
z

#
r

#*
r1

5.0n
z

5.0n
z jhmhPMFee 1

z

)))))) +−+= −
−+

ϕετΔ  

[ ]5.05.0#5.0
1

2
+++ +−Δ+= −

n
cp

n
zr

n
rz

n eePePMhh )))))

ϕμϕϕ
τ  

[ ]5.05.0#5.0
1

2
+++ ++−Δ+= −

n
c

n
z

n
zr

n
r eemePMhh

r
ϕϕμ

τ )))))
 

[ ]5.0nn
z

*
r

5.0n
r

*
z

n# jhPhPM
2

ee 1
++ +−+= − ϕεϕϕ ϕ

τΔ ))))))  

[ ]
[ ]

[ ]
[ ]5.015.0*#1

5.01*5.0*#1

5.0##
2

1

5.05.0*#

1

1

1

1

2

2

2

++++

++++

++

++

++−Δ+=

+−Δ+=

+−Δ+=

++−Δ+=

−

−

−

−

n
r

n
z

n
zr

n
r

nn
zr

n
rz

n

n
crr

n
z

n
z

n
r

n
z

n
z

n
rr

jhmhPMee

jhPhPMee

eemePMFhh

jhmhPMee

r

z

r

))))))

))))))

)))))

))))))

ϕε

ϕεϕϕ

ϕϕμ

ϕε

τ

τ

τ

τ

ϕ

   (5) 

with  

1
2

2
*

2

2

1
2

2
*

2

1

1111

1111

44

44
−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ+Δ+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ+Δ+=

−−−−

−−−−

rzz

rzz

MMmPMPMIF

MMmPMPMIF

rr

rr

εμεμ

μεμε

ττ

ττ

ϕ

ϕ

 
 Here m  is multipole number and cpc ee ϕ

)) , are the electric 
field tangential components at the conductive boundary 
and in the scheme they appear in magnetic field updates. 
In the first time step magnetic fields in boundary cells are 
used to update EM fields eq. (2) in conductor and in the 
second time step we update the magnetic field in vacuum 
using updated electric fields on conductive boundaries 

0,0, ϕϕ pcpc ee )) ≡ . In the case of monopole wake fields only 
azimuthal component of magnetic field on boundary is 
nonzero and remains only one field update in conductor. 
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Figure 2: Vacuum grid with 1D conducting lines at the 
boundary for monopole case. 

As in monopole case (Fig.2) [11] the stability condition 
of this scheme is also zτΔ ≤ Δ . With the time step τΔ  
equal to longitudinal mesh step zΔ , the scheme does not 
have dispersion in longitudinal direction. The transverse 
mesh and mesh step in conductor can be chosen 
independently from stability considerations in vacuum 
region. The above introduced scheme is for any order 
harmonics and doesn’t require additional computational 
time for higher order harmonics than for dipole one. This 
scheme can be easily generalized to 3D case [13].  

NUMERICAL EXAMPLES 
   As the first test we calculate the steady state wake of the 
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Figure 3: Convergence of the loss and kick factors. 
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Gaussian bunch with rms length σ=1mm in round pipe of 
radius a=1 cm and of conductivity κ=1e5 S/m. To obtain 
the steady state solution we have calculated 2m of the 
pipe and subtracted the wake of the first meter. Fig. 3 
shows convergence of the loss and kick factors to the 
analytical values 1.31 V/pC and 75.5 V/pC/m 
correspondingly.  
     Fig. 4 compares the analytical and the numerical 
dipole wakes for mesh resolution of 10 points on σ. In 
this case the error in loss and kick factors is about 3%. 
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Figure 4: Comparison of numerical and analytical wakes. 

As the second test we calculate a wake of finite length 
resistive cylinder.  It has radius a=1cm, length b=10cm 
and conductivity κ=1e4 S/m. For the Gaussian bunch with 
σ=0.025 mm the analytical results of the paper [13] could 
be used. The kick factor reads  
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where function tK  is given by Eq. (6.6) from [14]. 
Fig. 5 shows the numerically obtained dipole wake 

(black solid line) and the analytical steady state wake [3, 
4] (dashed gray line). The numerically obtained kick 
factor is equal to 42.6 V/pC/m and coinsides with that 
given by Eq.(6) (41.5 V/pC/m). The steady state kick 
factor is equal to 9.6 V/pC/m and underestimates the kick.  

   Third test is monopole wake potential calculation of 
tapered collimator (Fig.6) with parameters a1=17mm, 
L1=200 mm, a2=10mm, L2 =100mm, a3=6mm and 
conductivity κ=1e4 S/m. For a Gaussian bunch σ=50 μm 
numerically obtained loss factor for conductive walls (270 
V/pC) is twice larger than for perfectly conducting walls 
(133 V/pC) and cannot be obtained as direct sum of the 
geometrical and the steady-state solution. 
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Figure 6: Comparison of wakes “with” and “without” 
resistivity. 
Similar test on convergence and accuracy of the scheme 
has been done for beam pipe also for higher order 
harmonics and the scheme behaves in the same manner as 
dipole. The multipole wake field calculation with the code 
is not fully tested yet for more complicated geometries 
like collimators and currently is in improvement stage.   
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Figure 5: Comparison of transient and steady-state wakes. 
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