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Abstract 
We present a summary of the theoretical and numerical 

results of a dispersion-free time-dependent Green’s 
function method which can be utilized for calculating 
electromagnetic space-charge fields due to arbitrary 
current in a conducting pipe. Since the Green’s function 
can be expanded in terms of solutions to the wave 
equation, the numerical solutions to the fields also satisfy 
the wave equation yielding a completely dispersion-free 
numerical method.  The technique is adequately suited for 
modeling bunched space-charge dominated beams, such 
as those found in high-power microwave sources, for 
which the effects of numerical grid dispersion and 
numerical Cherenkov radiation are typically found when 
using FDTD type methods.   

INTRODUCTION 
When modeling the physics of space-charge in high-

current electron beams in high-power microwave sources, 
such as klystrons [1-5], it is necessary to have accurate 
representations of the space-charge electromagnetic fields.  
Although the space-charge fields are generated by these 
high-current beams, often times the effects of image 
charges and image currents on the boundaries of nearby 
conducting surfaces, such as a cylindrical drift tube, can 
make important contributions to these fields, as well. 

The most common method for numerically modeling 
space-charge fields in the presence of conductor 
boundaries utilizes the Yee algorithm [6]. In this method, 
the electric and magnetic fields are numerically computed 
on a grid through finite difference approximations of 
Faraday’s Law and the Ampere-Maxwell Law. The grid 
also serves the purpose of tracking the charge and current 
densities of the beam. While the Yee algorithm is self-
consistent, it is known to generate unphysical phenomena, 
such as numerical grid dispersion [7]. Therefore, it is 
helpful to develop alternative techniques, which include 
analytic/semi-analytic methods, for computing space-
charge fields that does include the effects of numerical 
grid dispersion.   

Recently, a number of methods have been developed 
explicitly for this purpose and have included the effects of 
circular conducting pipe boundary conditions and a flat 
cathode [8-10]. However, in these previous works it was 
assumed that the beam currents were only propagating in 
the longitudinal direction that is the beam currents 
transverse to the pipe axis were zero. While this 
assumption is adequate for modeling space-charge 
dominated accelerator systems, such as photocathode 
sources, it is not a good approximation for modeling high-
power microwave systems, such as klystrons, which may 

have non-negligible transverse currents that generate 
important electromagnetic space-charge fields.  

In this paper, we summarize the results of a 
significant extension to the space-charge field 
methodology which is presented in Ref. 11. by including 
the calculation of space-charge fields for cylindrically 
symmetric transverse beam currents. The paper is 
organized as follows. In Sec. II, we show how the space-
charge field equations are formulated for the case of 
cylindrically symmetric charge and current densities in a 
circular conductor pipe.  In Sec. III, we perform numerical 
calculations for the space-charge fields of a bunched 
annular electron beam undergoing transverse radial 
oscillations. In Sec. IV, we include a summary of our 
results. 

SPACE-CHARGE FIELDS 
In this section, we briefly summarize the method of 

Ref. 11 for computing the space-charge fields for 
circularly symmetric charged sources in a circular 
conducting pipe.  We assume that the radius of the pipe is 
denoted by r = a and the circularly symmetric charge and 
current densities are given by, ( )tzr ,,ρ  and ( )tzr ,,J , 
where z denotes the longitudinal coordinate parallel to the 
axis of the pipe. In addition, we impose the self-consistent 
assumption of charge conservation, i.e. 

( ) 0,, =⋅∇+∂∂ tzrt Jρ .  
In order to compute the fields, we first need to find 

appropriate spatial expansion formulae for the beam 
charge and current density. The expansion formula 
utilizes Bessel functions to represent the sources in the 
radial direction, and the expansion coefficients for the 
source densities are functions of z and t.  These 
coefficients are then used to compute coefficients for the 
space-charge fields which are also expanded in terms of 
Bessel functions.  We use the following Bessel function 
expansions for the charge and current densities, 
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where ( )xJ l  is the lth order Bessel functions of the first 
kind and lmj  is the mth zero of ( )xJ l . The space-charge 
fields are then expanded in the following manner, i.e. 
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We note that the Bessel expansion functions in Eq. [2] 
have been appropriately chosen to correctly enforce the 
conductor boundary conditions at r=a.  One can relate the 
mth space-charge field coefficients in Eq. [2] to the mth 
source coefficients in Eq. [1] using the field wave 
equations which are readily derived from Maxwell’s 
equations, i.e.  
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As demonstrated in Ref. 11, the solutions to the wave 
equations, and hence the solutions to the mth field 
coefficients can be expressed in terms of time-dependent 
Green’s functions which satisfy the wave equation for 
delta function sources in space and time.  The expressions 
for the mth space-charge field terms contain both spatial 
and temporal integrals over these Green’s functions and 
the mth source terms.  Since the mth radial expansion 
term in each space-charge field equation independently 
satisfies the wave-equation for the mth source term, then 
it is dispersion-free.  Likewise, since each space-charge 
field component is a sum of dispersion-free terms, then it 
is also dispersion-free.   Hence, the scheme has no 
difficulties with numerical grid dispersion. 

In Ref. 10, we outlined the numerical constraints for 
implementing the space-charge solver scheme, such as the 
minimum number of radial modes and the maximum 
integration time step, which is needed to achieve high 
field accuracy, <1% field errors.  We should emphasize 
that while the numerical solutions to the fields have 
truncation errors this does not impose any unphysical 
numerical dispersion in the calculation since the truncated 
field expansions are also dispersion-free. 

NUMERICAL STUDIES 
We demonstrate the space-charge solution method for 

an annular bunched beam undergoing radial (breathing 
mode) oscillations. This type of beam is featured in high-
power klystron designs and hence calculations of its 
space-charge fields are important.    

The annular beam is chosen to have a total charge Q, 
length L, and a uniform radial distribution function for 
time-dependent inner and outer radii.  Specifically, 
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where the inner and outer beam radii are given by 
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where ( )xH  is the Heaviside step function and the beam 
radii are constant for time t<0 and then undergo radial 
sinusoidal oscillations with amplitude r ′δ  and angular 
frequency ω for t>0 . We choose the following 
parameters for this example, a=0.0908 m, ar 9.00 = ,  

ar 025.0=′δ , sradacj 9
01 1094.7 ×==ω , mL 001.0= , 

ari 8.0= , aro 9.0= , and ar 025.0=′δ .  This parameter 
set would model the space-charge fields for a highly 
bunched electron beam undergoing breathing mode 
oscillations in a klystron drift tube with a characteristic 
frequency in the range of 1 GHz.  We note that our choice 
of radii also include the effect of transient startup physics 
at time t=0.   

From these parameters, one can first calculate the 
source expansion coefficients and then relate them to the 
field coefficients.  Since the beam currents are in the 
radial direction, then only rE , zE , and θB  are nonzero.  
Figures 1 and 2 show plots of normalized rE  vs. r/a for 
different times which are related to the characteristic 
beam oscillation period ωπ2=T . Specifically, Fig. 1 has 
plots of the normalized radial electric field at z=0.0 across 
the beam where the oscillation is occurring for times 

0=t  (red), Tt 1.0= (green), and Tt 25.0= (black).  It is 
immediately obvious that the electromagnetic contribution 
to the space-charge fields which occur after the t=0 is 
important compared to the electrostatic component which 
is the curve at t=0 despite having only a modest radial 
perturbation.  Figure 2 shows plots of the normalized rE  
for earlier times near the outer bunch edge, namely t=0.0 
(red) and t=0.0022 (blue). At a time TcLt 0021.02 ≅= , 
the space-charge field develops the first important 
electromagnetic perturbation within the beam midplane, 
which is when the beam edges begin to affect the middle 
of the bunch. Physically, this perturbation is due to light 
pulses being emitted by the longitudinal beam edges, at 
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2Lz ±=  and 0=t , when the radial beam oscillations 
begin. To complete the study, we also show plots of 
normalized zE  vs. z/a at the outer beam edge r = 0.9a for 
the times 0=t .0(red), t = 0.1T (green), and 

Tt 25.0= (black) in Figure 3.  Plots of the normalized zE  
at the inner beam edge r = 0.8a look nearly identical to 
Figure 3. We do not show plots of the normalized θB  vs. 
r/a at the bunch midplane because by symmetry 0=θB  
in the midplane.  

 
Figure 1: Normalized rE  vs. r/a for different times. 

 
Figure 2: Normalized rE  vs. r/a for earlier times. 

 
Figure 3: Normalized zE  vs. z/a for different times. 

 

SUMMARY 
We have summarized a new dispersive-free method 

for computing the space-charge fields of a cylindrically 
symmetric beam with arbitrary currents in a circular 
conducting pipe.  The method is dispersion-free since the 
space-charge field components are expanded with terms 
that independently satisfy the field wave equation. We 
computed the space-charge fields for an annular bunched 
beam undergoing radial breathing mode oscillations and 
found that are method can correctly account for transient 
startup effects.  We have also found that even for modest 
radial beam oscillations, the fully electromagnetic portion 
of the radial electric space-charge field can be important 
compared to the electrostatic portion. 
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