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Abstract

Multiobjective optimization has been used in many fields
including accelerator related projects. Here we use it as
a powerful tool for lattice design and optimization, which
includes betatron functions and brightness.

INTRODUCTION

Lattice design and optimization have been a try-and-
error process which relies mostly on the experience of the
expert. Due to the development and introduction of new
algorithms, e.g. MOGA (Multi-Objective Genetic Algo-
rithms) [1, 2] this kind of work can be more and more done
automatically by computers while supervised by experts.
In this paper, we show some results of lattice optimization
with MOGA and the global-view a MOGA approach can
have.

GENETIC ALGORITHMS AND MOGA

GA (Genetic Algorithms) mimics the nature, it first gen-
erate a population and then according to criteria function
and constraints to select the survival candidate, the survival
will generate new children according to random or prede-
termined algorithms. Keep this evolution for tens to hun-
dreds of generations, the remaining population will be an
optimal set of solutions.

The structure of MOGA we used is shown in Algo. 1.

Algorithm 1 Multi-Objective Genetic Algorithm [3]
1: Initialize population (first generation, random)
2: repeat
3: select parents to generate children (crossover)
4: mutation(children)
5: evaluate(children)
6: merge(parents, children).
7: non-dominated sort(rank) [3]
8: select half of (parents, children)
9: until reach a generation with the desired convergence

to the PO set

The initial population in our case are uniformly dis-
tributed random numbers. Then two solutions are chosen
as parents to generate two children and then a mutation (a
small perturbation of the value). In our simulation the two
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children are generated following a polynomial distribution
shown in Fig. 1. So are the mutation process.
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Figure 1: Probability distribution used for generating chil-
dren from parents, and perturb the children.

MOGA uses GA as the iteration process, and make the
“nature select” in a multi-objective way. One way is the
Non-Dominated Sorting, where instead of comparing two
scalars in a single objective optimization problems, in mul-
tiple criteria optimization problems, the candidate is com-
pared as two vectors, and sorted group by group [3, 2].
Without any preference of the objective functions, any can-
didate is not better than the others in same group. The first
group of the sorting is called non-dominated set, and it has
the best solutions in searching iterations.

BRIGHTNESS OPTIMIZATION

Brightness is defined as the radiated flux per unit source
area, emitted in a relative bandwidth:

B =
F

σxσ′
xσyσ′

y

It is usually quoted in units of (photons per
second)/(mrad2 mm2 0.1% bandwidth) [6]. It is more con-
venient to use, as a figure of merit, an average brightness,
which for dipole source is defined [4]:

Bd,avg =
dF/dθ

2.36σx2.36σy2.36σ′
γ

where dF/dθ is the vertically integrated flux, 2.36σx is
the Full Width Half Magnitude (FWHM) of the horizon-
tal electron beam size, 2.36σy is the FWHM of the vertical
electron beam size, and 2.36σ′

γ is the FWHM of the photon
emission angle in the vertical plane [6]:
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For average brightness of an undulator, because of the usu-
ally very small source size and divergence diffraction ef-
fects must be taken into account [5]:

Bu,avg =
Fn

2.364σγxσ′
γxσγzσ′
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Figure 2: ALS normal bend sector

A desired design would be having optimal brightness at
both straight sections for ID (Insertion Device) and Bend-
ing magnets. Although weighted sum can achieve this
goal in some degree, but the non-convexity and discon-
tinuity could make it not very practical. MOGA is used
for this optimization based on a simplified ALS lattice, i.e.
only the normal bend sector [2]. The lattice is shown in
Fig. 2. Three quadrupoles are used as parameters to opti-
mize the brightness, kQF, kQD and kQFA. The range for
these quadrupole strength are chosen [−10, 10] m−2 and
symmetric about the center bend.
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Figure 3: Brightness optimization with MOGA. The previ-
ous result with traditional approach are also shown. (1,1)
is the the normal sector of ALS as the reference lattice.

Fig. 3 shows the result of optimization of ALS normal
sector with MOGA, and compared with other approaches.

The optimal solutions are 4 disjoint regions, which cor-
responding to different combination of low βx and low
βy at two locations, straight and center bending magnet.
This figure can give the lattice designer/optimizer a global
view that what is the trade off between brightness in two
locations. Since the curve is flat, that means increasing
brightness in bending magnet would not compromise the
ID brightness too much. Therefore, the solutions near “D”
and “B” may be two good candidates.
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Figure 4: Brightness optimization as the population evolves
in MOGA. The four plots are the 30th, 45th, 80th, 100th

generation. Red dots represent the non-dominated solu-
tions.

The evolution of objective functions, i.e. the brightness
at center of straight section and bending magnet, are shown
in Fig. 4. Initially the parameters of the candidate solutions,
kQF, kQD and kQFA are random numbers with uniform dis-
tribution in [−10, 10] m−2. As the iteration (evolution)
goes, new children candidate are generated following cer-
tain probability around the parents. Their lattice properties
are evaluated and compared using non-dominated sorting
with existing solutions. The better ones are kept. In the
later generation (the steps of iteration), solutions move to-
ward the upper right corner where both brightness tend to
have optimal values. At the final stage, almost all solutions
are non-dominated.

For the optimal solutions, we have compared the pa-
rameter space with another optimization of emittance and
beta functions. This shows how different the optimiza-
tion of emittance and brightness can be for the strength of
quadrupoles. Fig. 5 and Fig. 6 have same ranges of QF,
kQD and kQFA. The parameters for optimizing brightness
are in four disjoint groups, same as shown in Fig. 3, while
for optimizing emittance εx, there are only two close sets
corresponding to high and low beta solutions [2]. This con-
firmed the lattice design strategy that not only emittance but
also the beta function at source point are important for high
brightness.
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Figure 5: Parameters for optimizing εx vs. βx, εx vs.|βx −
1| and B(UD) vs. B(BD). Projected at kqf − kqd plane.

Figure 6: Parameters for optimizing εx vs. βx, εx vs.|βx −
1| and B(UD) vs. B(BD). Projected at kqd − kqfa plane.

HIGH-LOW BETA AND LOW
EMITTANCE

The conflicting lattice functions can also be optimized
by MOGA. A practical example would be that the injection
requires high beta at straight, while the high brightness of
ID may require low beta. Both cases should keep the emit-
tance low. MOGA can find the optimal set of solutions, and
give a global picture about this kind of trade offs.

The optimization was done for two normal sectors of the
ALS, with low and high beta functions at the straights. One
for the injection and the other for optimal ID brightness.
The targeting βx is βL ≈ 1 m and βH ≈ 10 m. The
emittance is the third objective function to optimize. Part
of the optimal solutions are shown in Fig. 7, where certain
range of high beta βH is chosen to project onto emittance-
βL plane.

We noted that the |βH − 10| is actually equivalent to
10 − βH . This means the trade-off of solutions are that
in this high-low beta lattice, low emittance may tend to
have low βx at both locations. Based on the tolerance of

Figure 7: Optimal solutions of optimizing |βx−10|, |βx−1|
and εx. Projected in εx − |βx − 1| plane.

emittance and one of the βx, the βH of an optimal solution
is determined, and therefore the lattice. Further dynamics
may also be carried on.

CONCLUSION

MOGA was used for optimizing brightness for ID and
bending magnets of the normal bend sector of ALS. It
showed the distinct regions where different βx and βy and
the trade off between them in the center of straights and
bending magnets can affect the brightness choice. This
brings the possibility of low-beta high brightness lattice.
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