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Abstract
   Continuing interest in computing the coupling 
impedance of cylindrical multi-layer beam tubes led to 
several recent publications. A novel matrix method is here 
presented in which radial wave propagation is treated in 
analogy to longitudinal transmission lines. Starting from 
the Maxwell equations the solutions for monopole 
electromagnetic fields are in each layer described by a 
2×2 matrix.  Assuming isotropic material properties 
within one layer, the radially transverse field components 
at the inner boundary of a layer are uniquely determined 
by matrix transfer of the field components at its outer 
boundary. By imposing power flow constraints on the 
matrix, field matching between layers is enforced and 
replaced by matrix multiplication. The coupling 
impedance of a stainless steel beam tube defined by a 
matrix is given as a representative demonstration.  

INTRODUCTION
   The well known longitudinal resistive wall impedance 
was derived by Neil and Sessler [1] for an infinitely thick 
beam tube.  Zotter [2] in a seminal paper gives the 
impedance of beam tubes from various materials but  with 
finite wall  thickness. The solutions for multilayer 
structures are typically based on an algorithm involving 
field matching at the boundary layers and sequential 
matching of radial wave impedances [3]. Although this 
method in principle allows many layers, the numerical 
implementation becomes increasingly complex and can be 
simplified by the use of a matrix method.  
        In the course of the study of the coated ceramic beam 
tube in the RHIC injection kicker, this author noticed the 
analogy of radial with longitudinal wave transmission and 
conceived a novel method in which the sequential wave 
impedance matching is replaced with multiplication of 
appropriate matrices relating the electric and magnetic 
field components in each layer [4].  Independently and 
without reference to transmission lines, Lambertson 
applied matrices to a double metal layer [5].  Using the 
theory of transmission lines, Vos derived expressions for 
the longitudinal impedance of multi-layer vacuum 
chambers, but without using matrices [6]. Recently, 
similar concepts were presented as field transformation 
matrix formalism [7].    
   The matrix solution presented here is characterized by a 
strict separation of the impedance contribution from the 
space charge and from the surface impedance at the beam 

tube wall. The beam tube impedance is obtained as 
solution of the homogeneous vector wave equation and is 
independent of the driving current. Continuity of radial 
power flow in the absence of the driving current is 
assured by appropriate constraints on the matrix 
describing each layer. Obviously, the transfer of field 
components across the matrix implies the transfer of 
impedances.  

FIELD PRESENTATION 
   The electro magnetic field and its associated coupling 
impedance in a longitudinally uniform axially symmetric 
circular beam tube excited by a time harmonic current, are 
conveniently derived from the wave equation for the 
longitudinal electric field component, zE , in natural units 
( c 1, 0 1, 0 1, but 0 120Z  if shown) [8] 
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A logarithmic divergence in the space charge impedance 
is avoided using a tubular beam with radius, a , current, 
I , traveling in z -direction with velocity c , and  the 
current density 
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where /k c  and the time dependence j te omitted.  In 
the circular symmetric geometry considered here, the 
monopole electric field in any cylinder region is formed 
as linear combinations of cylinder functions, written in 
terms of Bessel functions or for this paper in terms of 
modified Bessel functions with argument ( )r . The radial 
propagation constant, 2 2 2( )S k is determined by 
the material parameters permeability j  and 
permittivity plus conductivity /S j k . The e.m. 
fields are here written with as free parameter,  
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The radial wave impedance is position dependent and 
given as  
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In a single layer infinite beam tube, inner radius b , the 
coupling impedance is determined by the “wall 
impedance” ( )Z b Z .

___________________________________________  
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BEAM TUBE IMPEDANCE 
   The foundation for the present study is laid by first 
deriving the expression for the longitudinal coupling 
impedance seen by an axial beam in a beam tube with 
known wall or “surface” impedance, ( )Z b . The beam tube 
properties are fully defined at the inner tube radius by its 
wall impedance which can be found independently of the 
beam even in the case of a layered tube (of course 
assuming only linear materials). It is important to note 
that the total coupling impedance consists of two parts, 
the space charge plus a separate contribution from the 
beam tube. The space charge is found by considering the 
beam tube as a perfect conductor. Space charge and wall 
impedance are energy dependent.  Although this paper 
treats the dependence rigorously, the final results are 
given for an extreme relativistic and filamentary beam.  
     The e.m. fields in the beam tube generated by the 
tubular current, with the common harmonic factor omitted 
and noting that in contrast to many papers k , are 
found to be inside the current tube 
     0( ) ( )ziE r AI r
     1( ) ( )iH r jA I r                                               (5) 
and outside of the current tube  
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with /k ,  the relativistic velocity factor, the 
relativistic mass factor, and A  and free coefficients yet 
to be determined.  Matching of ( )zE r  is built into the 
expressions and imposing Ampere’s law at r a leads to
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Matching the fields to the wall impedance value yields 
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Finally, the longitudinal coupling impedance per unit 
length follows as Equ. 9  
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The total result can be separated into the space charge 
plus resistive wall impedance, Equ.10, 
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The total impedance is simplified for the relativistic 
limit , and one step further for a filamentary beam 
into the expression in Equ. 11 
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which is a more general solution than Chao’s “Exercise 
2.1” [9] but reduces in the low frequency limit to his  
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MATRIX METHOD 
   The e.m. fields and the coupling impedance of a beam 
tube with infinite radial extent is discussed above.  The 
fields in a tube with finite radial thickness must satisfy 
additional boundary conditions at the outer radius, but are 
conveniently described by a matrix relating the field 
components at a radius within the layer to those at the 
outer radius, written here in the general form (and in 
natural units to stream line the notation) of Equ. (13) 
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The matrix elements must satisfy certain constraints to 
achieve power flow in addition to field component 
matching, implying that 0 0det ( , ) /M r r r r , and that at 
the reference radius, 0r r , the matrix reads as 

     0 0

1 0
( , )

0 1
M r r .                                                  (14) 

   The coupling impedance of a multi-layer structure is 
obtained by properly matching of the tangential field 
components at the cylinder boundaries.  In full analogy to 
the treatment of longitudinal transmission lines the 
matching is best done with radial transfer matrices for 
each layer. In this method, the fields at the inner most 
layer, r b are determined via an overall matrix by the 
wave impedance of the outermost layer at or .  The matrix 
of a sequence of radially spaced cylinders is found as the 
sequential product of all individual matrices, starting from 
the most inward radius, b , to the outermost radius or , [4] 
     0 0( , ) ( , ) ( , ).. ( , )I II X

o I II II X oM b r M b r M r r M r r         (15) 
     The rigorous expressions for the matrix elements in a 
layer with radial wave number  and S  can be written 
in terms of modified Bessel functions as,                            
     0 0 0 1 0 0 1 0( , ) ( ) ( ) ( ) ( )eem r r r K r I r I r K r
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   The matrix multiplication is readily performed by the 
Wolfram-Mathematica program and does not need 
explicit expressions for the elements in the overall matrix. 
However, approximate matrix expressions are instructive: 
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Matrix of Air (Vacuum) between Two Layers 
Following the usual practice of ignoring the small, non-
zero electric susceptibility, ( 1) 6×10-4 for the sake of 
simplicity, air is treated as vacuum. A practical matrix 
(and the extreme relativistic approximation, 

/ 0k ) for vacuum between two 
layers, r and 0r , follows as 
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Matrix of high-conductivity metal
The high conductivity of a metal allows the simplification 
of to j k and S to /j k resulting in 
the well known approximate expressions 
     0 0 0( , ) / cosh ( )eem r r r r r r

     0 0 0( , ) / sinh ( )ehm r r r r r r

     0 0 0( , ) / sinh ( )hem r r r r r r

     0 0 0( , ) / cosh ( )hhm r r r r r r                    (18) 

IMPEDANCE MAPPING 
     The e.m. field pair at the outer radius of a layer is 
“mapped” by the matrix to the inside and thereby also the 
impedance.  This can be generalized to the case of a 
multi-layer beam tube. 
     The coupling impedance seen by the beam is 
determined according to Equ. 11 from the wall or surface 
impedance ( )Z b  at the inner beam tube radius, which in 
turn is found from the “mapped” wave impedance, ( )oZ r
of the infinitely extended layer beyond the outer radius of 
the beam tube.  The wall impedance is in terms of the 
field pair given by 
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with the matrix elements found by multiplication 
according to Equ. 15 and in terms of impedances 
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    Although strictly speaking, the infinite terminal layer 
must be air, in practical terms, one can take a perfect 
conductor, or an infinitely thick metal cylinder with the 
wave impedances, ( ) 0oZ r , and ( )oZ r j k ,
respectively. Note that the matrix solution covers these 

and more general situations equally well without change 
to the matrices. 
     The case of vacuum has been treated in different ways. 
Vacuum does not force the fields in the last layer, and 
should be treated as an antenna radiation problem. Most 
publications use /Z j which for the last material 
layer leads in the extreme relativistic limit to the 
implausible ( ) 0z oE r . This author is exploring the use 
of eigenvectors of 1( , ) ( , )o oM b r M b r .  Vos introduced the 
heuristic concept of an inductive by-pass [10], in which 
the free space impedance is used with ( ) 1oZ r for  
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   CONCLUSION 
The matrix method [4], resuscitated  here,  to compute 

the coupling impedances of single and multi-layer beam 
tubes is demonstrated with an inductive by-pass  in Fig. 1. 

Figure 1:  Real (red) and imaginary (blue) impedance per 
unit length of a straight metal tube with b 23.5 mm, 

wall thickness 2 mm, and 1.5×106/ m [7] 
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