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Abstract

A technique has been developed which enables the cal-
culation of resistive particle wake effects. The technique
can simply be calculated to any order, and is easy and quick
to evaluate. No assumptions are made about the range of
the interaction, but this is especially useful for short range
effects. We show how the exact evaluation compares with
various common approximations for some simple cases,
and implement the technique in the Merlin and PLACET
simulation programs. The extension from cylindrical to
rectangular apertures is highlighted.

I
Modern accelerators are increasingly demanding, with

small precisely-defined beam bunches passing through
small beam pipes and collimators. Thus the effects of
wakefields are increasingly important and require accurate
calculation to ensure they do not dilute the emittance.

The wake field is found [1] by writing down Maxwell’s
Equations in the aperture and in the beam pipe and match-
ing them subject to boundary conditions. These solutions
can be written as a sum over angular modes. For many pur-
poses only the knowledge of the leading modes (m = 0
and m = 1) is adequate, however as requirements become
more stringent a technique is needed for the general case.

Chao [1] gives a general formula for the impedance,
from which he obtains an expression for the physical wake
in the long-range limit. Bane and Sands [3, 4] extend this to
shorter range though still making approximations. Various
aspects have been studied by other authors [5, 6, 7]. Exist-
ing implementations use different expressions in different
regimes [2]. Our approach unifies, simplifies and speeds up
the calculations, and makes the underlying physics clear. It
includes short range and long range wakes with no artificial
division and to arbitrary angular order.

The Inverse Transform

The Fourier Transform of the m = 0 mode of the longi-
tudinal component of the wakefield is given by [3]

Ẽz(k) = 2q
b

1
ikb
2 −(λ

k + k
λ )(1+ i

2λb )
,

where λ(k) =
√

2πσ|k|
c (i + sgn(k)), with q the charge,

b the radius of the tube and σ the conductivity of the pipe.
This assumes axial symmetry, the validity of Ohm’s law,
relativistic particles, and that the skindepth is smaller than
both the thickness of the pipe and the tube radius, but is
otherwise general. This enables the Bessel function solu-
tion to be replaced by a sinusoidal form. It is convenient to
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introduce the scaling length s0 = 3

√
cb2

2πσ . and the dimen-

sionless quantities K = s0k, and s′ = s
s0

, .
To find the corresponding wakefield requires the inverse

Fourier transform. This has been much studied in the
literature[3, 1], using approximate forms and evaluating
them by a contour integral. By contrast we will do the
integration numerically, enabling us to provide a general
technique without making approximations.

The back transform Ez(s′) can be written
s0
2π

∫ ∞
−∞ feven(K) cos(Ks′) + fodd(K) sin(Ks′) dK,

where the functions are the even and odd parts of Ẽz(K).
In the limit of large b compared to s0 and neglecting high
and low frequencies Ẽz(k) = − 2qk

λb . The Fourier Trans-

form [1] is Ez(s) = q
2πb

√
c
σs−

3
2 . However we can also

evaluate it numerically, in preparation for more compli-
cated forms. We have feven(K) = −√

K, fodd(K) =
i
√

K .
A function like

√
K sin(K) presents problems for nu-

merical integrals as the function is oscillating with increas-
ing amplitude, and any summation technique will not work.
However we know that the integral exists because it can be
done analytically. We can perform the K integral by first
integrating with respect to s′, thereby dividing by a factor
of K so that the oscillations decrease in size and the nu-
merical integration can succeed. The result can then be dif-
ferentiated numerically, using an intermediate interpolating
function, to give the desired wakefield. This can be verified
and results are indistinguishable from Chao’s formula.

If the large s requirement is relaxed then approximately
Ẽz(k) = 2q
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.

The even and odd parts are feven(K) =
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Although the wake is a function of three parameters (s, b
and σ), the use of the scaling length s0 enables it to be writ-
ten as a universal function. This transform can also be per-
formed analytically, using contour integration as was done
by Bane and Sands [3] and our results agree with theirs.

The Full Formula

For the full version of one gets

feven(K) =
−8

(
ξ2+2ξ

√
K+ 4√

K

)

4

[
ξ
√

K− 1
K

(
ξ+2

√
K

)
+K

]2

+

(
ξ2+ξ2

√
K+ 4√

K

)2

fodd(K) =
−16i

[
ξ
√

K− 1
K

(
ξ+2

√
K

)
+K

]

4

[
ξ
√

K− 1
K

(
ξ+2

√
K

)
+K

]2

+

(
ξ2+ξ2

√
K+ 4√

K

)2

NTRODUCTION 

Proceedings of PAC09, Vancouver, BC, Canada TH5PFP084

Beam Dynamics and Electromagnetic Fields

D06 - EM Fields 3401



where we have introduced ξ = s2
0/b2. The earlier approxi-

mation corresponds to ξ = 0.
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Figure 1: The exact longitudinal wake for various ξ.

Fig. 1 shows how the function when evaluated with our
numerical technique changes for different values of ξ. It
can be seen that for values of below about 0.1 the approxi-
mation is very good. For a copper beam pipe with a radius
of 1 cm the scaling length is of order 20 microns, so ξ is
very small in all practical cases at present. However, for
possible future collimators with very low conductivity and
small radius it might need to be considered.

Longitudinal: Higher Order Modes

The full formula for higher modes (m > 0) is
Ẽm

z (k) = 4Im
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This can be separated into odd and even parts and inte-
grated numerically with our technique.
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Figure 2: The m = 5 wake as a function of s ′ and ξ.

We show the dependence on ξ in Fig. 2 for m = 5.
The dependence on ξ increases for higher modes but is still
small in practical cases.

Transverse Wakes

The transverse wakefield experienced by a particle with
transverse position r due to another particle at r ′ can be
written as a sum over angular modes

�FT (r, θ, s) =
∑

m rm−1r′m(r̂cos(mθ) −
θ̂sin(mθ))Wm

T (s),
where θ is the angle between the two particles and s is

the distance between them. The Panofsky-Wenzel theorem,

applies term by term giving W ′m
T (s) = Em

z (s). The trans-
verse wake at any order can be obtained by integrating the
longitudinal wake. This is convenient as we calculate this
integral for the inverse transform.
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Figure 3: Transverse wakes - various modes with ξ=0.

With our formula we can study the general case. Fig. 3
shows the different transverse modes, for ξ=0.

AC Conductivity

In the classical Drude model for ac conductivity we have
σ̃ = σ

1−iKΓ , where we have introduced the dimensionless
relaxation factor Γ = cτ/s0. For a 1 cm radius copper tube
at room temperature the relaxation time is τ = 2.7×10−14s
or cτ = 8.1 μm giving Γ = 0.4, so we explore Γ values in
the range 0 to 5. The dc conductivity σ is replaced by σ̃.
Hence, with t = |K|Γ√

1+K2Γ2 .,

λ = b
s2
0

√|K|(1 + K2Γ2)−1/4[i
√

1 + t,±√
1 − t]

Fig. 4 shows the results for various values of Γ. These
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Figure 4: The longitudinal wake for various Γ values.

wakes show a fairly strong dependence of Γ and the effects
of AC conductivity may be important in a particular case.

Implementation and Example

The integrals used to generate the plots in this paper were
performed using Mathematica. Tables with 6 × 1001 × 21
elements were written to file, covering the ranges 0 ≤ Γ ≤
5, 0 ≤ s′ ≤ 100 and 0 ≤ ξ ≤ 2. A separate table was used
for each mode, and for longitudinal and transverse wakes.

We have defined a small portable C++ object
collimatortable. When created it will read the
full 3 dimensional table and construct a one dimensional
table, using parabolic interpolation between the 9 closest
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points, for s′ at this value of Γ and of ξ. This table can
be used to find the value for any value of s ′ in the range.
These files are obtainable from the authors.

We consider a 1 m long collimator made of Titanium,
with conductivity σ = 2.33 × 106 (Ωm)−1. The radius
is 1.4 mm and the relaxation time is 2.7 × 10−14 s. This
gives s0 = 0.165 μm, Γ = 0.49 and ξ = 0.00014. This
collimator and the beam bunch properties are those of the
recent tests at SLAC End Station A, with βx = 128.2 m,
βy = 11.9 m, εx = 5.49 × 10−9 m, εy = 3.44× 10−10 m,
initial beam energy p = 28.5 GeV and bunch length σz =
0.3 mm, with the sole difference of εx = εy = 3.44×10−10

m when using Merlin. The bunch of 1010 particles was
modelled by 50000 macroparticles in both simulations.

We show the predictions of Merlin for the mean kick
of the bunch in Fig. 5 and for PLACET for the increased
geometric emittance in Fig. 6. The results from Merlin and
PLACET agree surprisingly well, given that one uses the
Yokoya terms and the other does not. MERLIN shows that
higher modes become important (only) for offset ≥ b/2.
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Figure 5: Merlin: deflection as a function of offset.

Figure 6: PLACET: emittance as a function of offset.

Rectangular Apertures

Rectangular apertures are, in Chao’s words, ‘consider-
ably more complicated’ owing to lack of axial symmetry.
Again, one works in frequency space, and considers the
fields at a witness point (x, y) due to a current of frequency
ω along the z axis at a point (X, Y ), for which the fields
are easy to write down. It is useful to work with combina-
tions of wires at the four points (±X,±Y ), distinguishing

the 4 cases (++),(+-), (-+) and (- -),where the two ± signs
describe the symmetry in x and y. The result of the single
wire is one quarter of the sum of the 4 cases.

The fields due to the image charges satisfy the
2D Laplace equation, and have solutions of the form
sin(Kx)Sinh(Ky), cosh(Kx)cos(Ky), etc. There are 8
possibilities but by considering each symmetry separately
one restricts this to 2, for example (++) must have the
cos(Kx)cosh(Ky) or cosh(Kx)cos(Ky) form. For a slit
infinite in (say) x, then the second is unphysical, however
a finite rectangle requires both. Each component for E and
H has this form, but the Maxwell equations mean that all
6 components can be written in terms of only 2 arbitrary
functions of K , which we take as Ax(K) and Ay(K). We
then apply the Leontovitch condition to the complete fields
�E − n̂(n̂. �E) = Zsn̂ × �H. For a boundary at y = b this
relates Ex and Hz , likewise Ez and Hx. The two relations
prescribe the two amplitudes Ax(K) and Ay(K). (For a
rectangular slit there are boundaries at both y = b and
x = a, giving the necessary 4 conditions for the 4 am-
plitudes. )

This gives a wake of the form W (k, x, y, X, Y ) =∫ ∞
0

G(k, K, x, y, X, Y ) dK . The transform from k to the
longitudinal separation s can be done analytically. The in-
tegral over K requires numerical computation. Results will
appear in a forthcoming publication.

Conclusions

Longitudinal and transverse resistive wakes can be cal-
culated in simulation programs pretabulated numerical
Fourier Transforms. AC conductivity and higher order an-
gular modes are included. We have shown that this can
be used by the Merlin and PLACET programs and other
codes can be added in due curse. Full details of this work
are given elsewhere[10] .
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