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Abstract 

 
Precise measurements of optics from coherent betatron 

oscillations driven by ac dipoles have been demonstrated 
at RHIC and the Tevatron. For RHIC, the observed rms 
beta-beat is about 10%. Reduction of beta-beating is an 
essential component of performance optimization at high 
energy colliders. A scheme of optics correction was 
developed and tested in the RHIC 2008 run, using ac 
dipole optics for measurement and a few adjustable trim 
quadrupoles for correction. In this scheme, we first 
calculate the phase response matrix from the measured 
phase advance, and then apply a singular value 
decomposition (SVD) algorithm [1,2] to the phase 
response matrix to find correction quadrupole strengths. 
We present both simulation and some preliminary 
experimental results of this correction. 

 

INTRODUCTION 
It has been demonstrated in RHIC and the Tevatron that 

an ac dipole, as a non-destructive diagnostic tool, can be 
used to precisely measure optics [3, 4]. One important 
application of this technique is to correct linear gradient 
errors. The general relation between quadrupole strength 
and betatron phase variations under the linear 
approximation is given by 
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where iφΔ  is the phase variation at the location of the 

i th beam position monitor (bpm), iklΔ  is the gradient 
variation of the i th quadrupole, M  is the phase response 
matrix defined as  
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jβ  and jψ are the betatron function and phase at the  

        
                                            

Figure 1: Example of excluded bpm data due to 
suspiciously large 2χ . The red dots are measured data and 
the green line is the fitting result.  

 
position of the j th quadrupole respectively, iφ  is the 
betatron phase at the position of the i th bpm and ν is the 
unperturbed betatron tune. Since the phase beat φΔ  can 
be measured from the coherent oscillation excited by an 
ac dipole, the inversion of equation (1) can be used to find 
the proper strengths of a few adjustable quadrupoles such 
that the measured phase beat is reduced.  The number of 
bpms is usually much larger than the number of 
adjustable quadrupoles, which makes equation (1) an over 
determined linear system. For such a system, the least 

2χ solution for the quadrupoles’ strengths is given by a 
singular value decomposition (SVD) algorithm[3].  

                     

PHASE BEAT MEASUREMENT 
For beam betatron oscillations driven by an ac dipole, 

the betatron phase at each bpm location is obtained by 
fitting the measured turn by turn data[1]. We used three 
filters to exclude unreliable bpm data from our analysis. 
The first filter is a status bit that arrives with the bpm 
data. The FFT of the turn-by-turn data provides the 
second filter - data with apparent driving tune errors are 
screened out. After fitting all bpms, the fitting 2χ  serves 
as the third filter. Bpms with suspiciously larger fitting 

2χ compared with other bpms are excluded from further 
analysis.  Fig. 1 shows an example of bpm data with 
suspiciously large fitting 2χ . 
     Fig. 2 shows preliminary results of phase beat 
measurement in the RHIC 2008 run.  As shown in Fig. 2 
(b), the error bars are around 20%, as calculated from the 
variance of 5 measurements. Improving bpm data quality 
and the number of measurements are critical to reduce the 
statistical errors. 
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                                       (a)          
 

          
                                       (b) 

Figure 2: Phase beat measurement from the RHIC 2008 
run. The abscissa is the location of the bpms in units of 
meters and the ordinate is the phase in units of radians. (a) 
shows the result of one measurement. The red line is 
calculated from model and the blue dots are measured 
data. (b) shows the averaged phase beat of 5 
measurements. 

SVD 
    RHIC has 36 trim quadrupoles with separate power 
supplies.  We plan to use them as knobs to correct linear 
gradient errors.  The phase response matrix M is written: 
 

                                   TUWVM =  
 

with IUU T = , IVV T =  and W being diagonal 
matrices. The strengths of the trim quadrupoles are 
obtained by inverting equation (1): 
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Except for giving the least 2χ solution for quadrupole 
correction strengths, the SVD algorithm also provides 
information about the correcting range of the trim 
quadrupoles and their vulnerabilities to noise in measured 
phase beat. We rewrite equation (5) as  
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where  

                     ∑ Δ=Δ
j

jij
T

i klVkl ' ,  

                      ∑ Δ=Δ
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jij
T

i U φφ '  

and we arrange the system such that tqwww >>> ...21 . 
As shown in equation (4), the phase beat, as a 

bpmn dimension vector, is mapped into a vector in a 

subspace with tqn dimension. Components normal to this 
subspace are out of the correcting range of the trim 
quadrupoles. Furthermore, equation (4) also grouped the 
phase beat and the correction trim quadrupoles into 

tqn modes. Modes with larger eigenvalues are relatively 
easier to correct for two reasons. First, for a given phase 
beat amplitude, smaller correcting quadrupole strengths 
are required for a larger eigenvalue mode. Second, for 
given noise levels in phase beat measurements, the 
resultant noise in the strengths of trim quadrupoles is 
smaller for modes with larger eigenvalues than those with 
smaller eigenvalues.  
 

PROOF OF PRINCIPLE 
    In the RHIC 2007 and 2008 runs, experiments were 
peformed to verify these algorithms. In these experiments, 
gradient errors were intentionally applid to trim 
quadrupoles. The correction algorithm was then used to 
find a correction. The resulting error strengths of the trim 
quadrupoles should then reproduce the preset gradient 
errors with opposite signs. Fig. 3 shows that the SVD 
algorithm successfully reconstructed the preset gradient 
error in the RHIC 2007 run. Data analysis for the RHIC 
2008 run is still in progress. Analysis of RHIC 2008 run 
data presents two challenges: noise in the measured phase 
beat, and trim quadrupole range limits. As described in 
aprevious section, depending on its eigenvalue, each 
mode has different sensitivity to phase beat noises.  

 

 
Figure 3: Experiment result in RHIC 2007 run. The top 
two graphs show the measured phase beat due to the 
preset trim quadrupole error and the bottom graph show 
the strengths of trim quadrupoles required to correct the 
phase beat as calculated from the SVD algorithm.    
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                     (a)                                          (b) 

        
                   (c)                                           (d) 
Figure 4: Simulation results of reconstructing gradient 
errors in presence of phase beat noises. The abscissa is the 
longitudinal location along the ring and the coordinate is 
the quadrupole strength. (a) Reconstruction of gradient 
errors set to trim quadrupoles without large components 
in modes with small eigenvalues. The noise level is 2%; 
(b) Same as (a) with noise level of 20%; (c) 
Reconstruction of gradient errors set to trim quadrupoles 
with large components in modes with small eigenvalues. 
The noise level is 1%. (d) Same as (c) with 10% noise. 

 
Modes with substantially small eigenvalues compared 
with other modes are most vulnerable to phase beat noises 
and are typically cut to avoid ill-conditioned equations. 
However, if the phase beat due to the preset gradient 
errors has large components in modes with very small 
eigenvalues, it is difficult to reconstruct these errors by 
SVD as the cut-off process results in major information 
loss.  Fig. 4 shows simulation results for two set of preset 
gradient errors reconstructed by the SVD algorithm. As 
shown in Fig. 4 (d), if a trim quadrupole with preset 
gradient errors has large components in noise sensitive 
modes, SVD does not reconstruct the phase errors well. 

To verify the correction algorithm and test the range of 
the 36 RHIC trim quadrupoles, we performed simulations 
for the RHIC 2009 run optics. In these simulations, 
random gradient errors were assigned to quadrupoles 
throughout the ring and the SVD algorithm was applied to 
find the proper correcting strengths for the 36 trim 
quadrupoles. 

The phase beats before and after the corrections are 
shown in Fig. 5. Fig. 5 (a) shows the effective correction 
of gradient errors randomly assigned to all ‘QF’ 
quadrupoles with peak relative amplitude of 2.5%. The 
rms phase beat reduced from 7.6% to 2.8% as a result of 
correction which indicates that the randomly generated 
phase beat has major components falling into the 
correction range of the trim quadrupoles. On the contrary, 
Fig. 5 (b) shows the correction result for another set of 
gradient errors which fall out of the correction range. Fig. 
5 (c) and (d) shows similar results with the gradient errors 
assigned to all ‘QD’ quadrupoles. 

 

   
                   (a)                                         (b)  

    
                    (c)                                         (d) 

Figure 5: Simulations of gradient errors correction with 
RHIC 2009 run optics. The abscissa is the longitudinal 
location along the ring and the coordinate is the phase 
beat before (red) and after (green) the correction.  

 

SUMMARY 
The algorithm described here for linear gradient errors 

correction has been verified by simulation and experiment 
in the RHIC 2007 run. In the process of analyzing RHIC 
2008 run data, bpm noise is a challenge for reconstructing 
preset gradient errors, especially when the gradient errors 
have large components in modes with small eigenvalues. 
Simulations to study the noise effects have been done 
Results show that modes with smaller eigenvalues are 
more vulnerable to noise and harder to reconstructed.  
Simulations have also indicated a reasonable correction 
range for the 36 trim quadrupoles. Within this range, the 
SVD correction is very effective in simulations.   
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