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Abstract

Frequency map analysis is being widely used, nowa-
days, both in simulations to design or improve accelerator
lattices, as well as in experiments to study the transverse
nonlinear dynamics in accelerators. A significant chal-
lenge to the use of frequency map analysis in experiments
is the usually very fast decoherence of transverse oscilla-
tions, caused by the large nonlinearities of state-of-the-art
lattices. Due to the decoherence, the center of mass oscil-
lations of bunches often disappear in less than 100 turns.
A potential way to get around this limitation is the use
of multiple BPMs (Beam Position Monitors) distributed
(symmetrically) around the storage ring. This paper de-
scribes the challenges multi-BPM frequency map analysis
poses as well as initial results using the ALS.

INTRODUCTION

Frequency Map Analysis (FMA) is being widely used in
both simulations and experiments to design and improve
accelerator lattices [1, 2]. It can provide a global view of
the dynamics by studying the tune diffusion of transverse
oscillations. The key numerical requirement for FMA is the
precise measurement of the transverse tune in a small num-
ber of turns. The useful number of turns is often restricted
by decoherence. This presentation shows how multiple
BPMs (Beam Position Monitor) can help to gain higher
precision on the tune measurement. We also show the re-
sult of a decoherence study during the first 100 turns after
a horizontal/vertical kick. A FMA result using experiment
data is also presented. If one would use only one BPM,
it would not be easy to achieve the required resolution of
transverse tunes.

DFT AND NAFF

The turn-by-turn closed orbit data recorded by BPMs
is processed by DFT (Discrete Fourier Transformation)
or more advanced algorithms such as Interpolated Fourier
Transformation, or NAFF (Numerical Analysis of Funda-
mental Frequency) [3].

As an extension of DFT, NAFF searches for the maxi-
mum of

cT (ω) = 〈f, g〉 =
1
T

∫ T

−T

feiωtχ dt
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where χ(t) = 1 + cos(πt/T ) is the Hanning filter (win-
dow). The use of a window allows the determination of the
frequencies with much greater accuracy. In the Appendix,
Fig. 5 and Fig. 6 shows asymptotic properties of frequency
precision depending on the number of data points. In Fig. 5
the signal has a white noise with σ about 1% of the signal
amplitude. In Fig. 6, the signal has an exponetially damped
amplitude e−t/τ and τ = 1000. From this benchmark,
NAFF gives best performance, and for a 10−10 precision,
it needs only about 1000 data points, which would only be
a few turns in a modern storage ring, if we can use all the
BPMs.

MULTIPLE BPMS
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Figure 1: Raw turn-by-turn BPM data for a horizontal kick
of 632 V and 2000 V. The frequency is shown in the third
plot, where the horizontal tune is the large peak.

The frequency analysis, DFT or NAFF, relies on the fact
that {1, sin(nx)/

√
π, cos(nx)/

√
π}, n = 1, 2, ... forms an

orthonormal set. The DFT of data points is defined as
Hn ≡

∑N−1
k=0 hke2πikn/N . One requirement for the data

sampling is that the data points are equally spaced. i.e.
hk = h(t) ∗ δ(t − kT ), where T is the period. If the data
is sampled non-equally spaced, it will introduce high fre-
quency terms. Due to the aliasing effect, this will bring
larger noise into frequency space and could reduce the fre-
quency resolution. In a storage ring, different BPMs have
different phase advance between them, and also different
beta functions. Blindly grouped data may introduce extra
artificial “periodicity”, and could create additional spectral
peaks in frequency space. They may dominate over the true
transverse tune. The top plot in Fig. 2 shows the frequency
of turn-by-turn data from 96 BPMs, the data are organized
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in a turn-wise way, i.e. {h00, h10, . . . , h95,0, h0,1, . . . },
where hij represents the jth turn closed orbit data recorded
by the ith BPM. A different way of organizing the data may
bring a better result.
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Figure 2: DFT of two multi-BPM data analysis. The top
one groups data in the order of beam traveling time. The
bottom one groups in the order of BPMs.

The closed orbit signal received by the �th BPM at the
kth turn is

h�k =
√

β
(�)
x εxei(2πkνx+φ(�)

x )

the superscript (i) is the index of BPM, εx horizontal
emittance, βx the horizontal beta function, and φx the
phase at the indicated BPM location. For the data group
{h11, h12, . . . , h1K , h21, . . . , hLK} the DFT is

Hn =
∑
�,k

h�ke
2πi(�∗K+k)n

LK

where L is the total number of BPMs, K is the turn number.

Hn =
∑

k

h0ke
2πikn
(LK) +

∑
k

h1ke
2πi(K+k)n

(LK) + · · ·

+
∑

k

h(L−1)ke
2πi((L−1)∗K+k)n

(LK)

(1)

The signal received by a different BPM in the same turn
have the same tune but different amplitude and phase:

h1k/h0k =
√

β
(1)
x /β

(1)
x eφ(1)

x −φ(0)
x . From the linearity and

translation properties of the Fourier transform, the second
part of Hn is only a phase shift of the first term and then a

scaling factor of
√

β
(1)
x /β

(1)
x :

∑
k

h1ke
2πi(K+k)n

(LK) =
∑

k

h0k

√√√√β
(1)
x

β
(1)
x

e
2πi(K+k)n

(LK)

= e
2πin

L

∑
k

h0k

√√√√β
(1)
x

β
(0)
x

e
2πikn
(LK)

Therefore

Hn = (1+

√√√√β
(1)
x

β
(0)
x

e
2πin

L ++ · · ·+

√√√√β
(L)
x

β
(0)
x

e
2π(L−1)in

L )Hn1

where Hn1 is the first term in Eq. (1). In most cases, βx are
not perfectly symmetric, and the sum part does not cancel.
The final spectrum of Hn is defined by Hn1, which is the
horizontal tune without any other side band. The DFT of
real BPM data from the ALS is shown in the bottom plot in
Fig. 2.

The tune measurement can be enhanced by grouping
BPM turn-by-turn data in BPM-wise order. The compar-
ison with the other method, where data is grouped in Turn-
wise order is shown in Fig. 2. Since the number of points
increased as we are using multiple BPMs, the tune mea-
surement becomes more precise for a given short time pe-
riod. This opens the door to fast tune diffusion experi-
ments.

DECOHERENCE AFTER KICK

Transverse decoherence occurs because different parti-
cles have slightly different oscillation frequencies. For a
Gaussian beam ψ0(J) = e−J/J0/

√
2πJ0, the distribution

after the kick βθ is given by [4]

ψ2(φ, J, t) = ψ1(φ − ω(J)t, J)

= ψ0(J + θ
√

2Jβsin(φ − ω(J)t) + βθ2/2)

where ψ1(φ, J) is the beam distribution immediately after
the kick.
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Figure 3: Transverse decoherence. The transverse tune νx

dependence on a horizontal kick. νx are analyzed right af-
ter the kick and before damped out.

For a small transverse kick, assuming amplitude-
dependent betatron frequency is given by ω(J) = ω0+ω′J ,
the slowly varying oscillation amplitude is [4]

〈x〉ampl (t) =
βθ

1 + Θ2
exp

[
− βθ2Θ2

2J0(1 + Θ2)

]
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where Θ ≡ ω′J0t. The linear dependence on J0, therefore
quadratic on kick strength observed at ALS is shown in
Fig. 3.
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Figure 4: Frequency Map of a Multi-BPM measurement,
the color and diffusion represents log10(Δνx/NTurn) at
different kick strength.

A FMA experiment was carried out by combining sev-
eral horizontal and vertical kicks ranging up to 6 kV and
8 kV. There were 65 BPMs and each recorded 1024 turns of
the beam centroid position. 10 turns of data starting from
the 100th and 120th turn are used for frequency analysis
with NAFF. The tune diffusion rate shown in Fig. 4 are
log10((νx,100 − νx,120)/20). The magnitude of the diffu-
sion rate as well as the general features of the frequency
map agree reasonably with simulated data.

CONCLUSION

We showed a method using multiple BPM data to im-
prove the convergence of the transverse tune measurement,
and proved this both mathematically and numerically. This
method then was used for a transverse decoherence study
and Frequency Map Analysis. It has advantages for the
study of cases with fast decoherence using turn-by-turn
data from multiple BPMs. We plan to continue to test
the method in more detail in the future and carry out de-
tailed comparisons of calculated and measured tune diffu-
sion rates.
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APPENDIX

It is well known that DFT has a resolution proportional
to the number of points in the time series. NAFF [3] has
a much better precision, can be up to N4 for analyzing the
fundamental frequency. This section shows the comparison
between DFT, interpolated DFT and NAFF.
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Figure 5: The frequency precision depends on number of
points. The test signal has single frequency and a white
noise, σ equals 1% signal amplitude.

Two types of noise are added to a simple harmonic os-
cillation. One is the noise of displacement, which can
be from instruments, as shown in Fig. 5. The signal is
s(t) = sin(2πνxt) + AN(σ), where N(σ) is a standard
white noise and A is its amplitude. Due to the searching
mechanism, NAFF could give better result when noise is
smaller, while DFT could not.
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Figure 6: Comparison of different frequency analysis
method. The test signal has an exponential amplitude
damping, damping time τ = 1000 turns.

The other type of comparison based on the fact that the
beam may have decoherence. For the purpose of com-
paring the precision of three numerical method, we as-
sume the amplitude decays exponentially, i.e. s(t) =
(1 + e−t/τ ) sin(2πνxt). The result is shown in Fig. 6 for
τ = 1000 turns. NAFF will have better asymptotic behav-
ior if the damping time is shorter.
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