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Abstract 
This paper reports on recent advances in the 

development of a numerical scheme for describing the 
quiescent loading of a quasi-equilibrium beam 
distribution matched to a periodic focusing lattice [1]. The 
scheme allows for matched-beam distribution formation 
by means of the adiabatic turn-on of the oscillating 
focusing field, and it is examined here for the cases of 
alternating-gradient quadrupole and periodic solenoidal 
lattices. Furthermore, various distributions are considered 
for the initial beam equilibrium. The self-similar 
evolution of the matched-beam density profile is observed 
for arbitrary choice of initial distribution function and 
lattice type. The numerical simulations are performed 
using the WARP particle-in-cell code. 

INTRODUCTION 
Periodic-focusing accelerators and transport systems 

have a wide range of applications ranging from basic 
scientific research to industrial applications [2]. It is 
therefore important to develop an improved theoretical 
understanding of intense beam transport, stability, and 
equilibrium properties. However, the effects of the intense 
self-fields produced by the beam space-charge introduce a 
significant challenge for analytical studies, and the only 
known distribution function that provides an exact beam 
equilibrium in an periodic-focusing lattice is the 
Kapchinskij-Vladimirskij (KV) distribution [2]. This 
distribution, however, is unstable at sufficiently high 
beam intensities, and therefore approximate analytical 
analysis or numerical models have to be developed to 
describe other (stable) intense beam quasi-equilibrium 
solutions.  

Recently, a numerical approach for describing the 
quiescent formation of a quasi-equilibrium beam 
distribution matched to an alternating-gradient quadrupole 
lattice by means of adiabatic turn-on of the oscillating 
focusing field has been proposed in [1]. In this approach, 
an equilibrium beam distribution is first loaded into the 
equivalent smooth-focusing uniform channel [2]; then the 
oscillating feature of the lattice is adiabatically turned-on, 
and is accompanied by a corresponding decrease in the 
uniform focusing component. It was demonstrated that 
the method allows for the quiescent formation of a quasi-
equilibrium beam distribution matched to a quadrupole 
lattice for a broad range of beam intensities and vacuum 
phase advances describing the strength of the oscillating 
focusing field. Furthermore, properties of the quasi-

equilibrium matched-beam distribution have been 
investigated and compared to the predictions of analytical 
theory that applies Hamiltonian averaging techniques to 
the nonlinear Vlasov-Maxwell equations [2], assuming 
sufficiently small vacuum phase advance, σv. In 
particular, correct to order ε3, where ε≡σv/2π, the theory 
predicts the self-similar evolution of the beam density 
profile.  The evolution of the quasi-equilibrium beam 
density profile obtained in the numerical simulations 
making use of the adiabatic formation scheme has been 
investigated. The self-similarity feature was preserved to 
good accuracy for σv<660

, and for a wide range of beam 
intensity ranging from an emittance-dominated beam with 
σ/σv≈0.26, to a space-charge-dominated beam with 
σ/σv≈0.91. Here, σ denotes the depressed phase advance. 
Furthermore, it was shown that for higher values of 
vacuum phase advance (for instance, σv=87.50) the self-
similarity feature becomes less accurate, which 
demonstrates the validity limits of the theory.   

In this paper, we continue developing this method for 
adiabatic formation of a matched-beam quasi-equilibrium, 
and generalize it to the case of a periodic focusing 
solenoidal lattice.  Furthermore, other initial smooth-
focusing equilibrium distributions, namely a thermal 
equilibrium and a waterbag equilibrium, are considered.  

MODEL DESCRIPTION  
In this section, following [1], we summarize the 

method for adiabatic formation of a quasi-equilibrium 
beam distribution matched to an alternating-gradient 
quadrupole lattice, and generalize it to the case of a 
periodic solenoidal focusing lattice. The method works as 
follows. First, the oscillating focusing field of the lattice 
is replaced with the smooth-focusing force, and an 
equilibrium beam distribution is loaded into a uniform 
focusing channel. Then the oscillating focusing field is 
adiabatically turned on as the amplitude of the uniform 
component is adjusted to maintain the average (smooth-
focusing) effects of the total focusing field fixed. For the 
case of a quadrupole lattice, the total focusing force 
acting on the beam particles is specified by        

( ) ( ) ( ) ( )( )2 1 q
q sf x y q x yF V s x y V s s x yκ κ= − + − −⎡ ⎤⎣ ⎦ e e e e ,  (1)  

where V(s) is a function describing the transition of the 
applied lattice force and varying from zero to unity, κq(s) 
is the quadrupole lattice coupling coefficient, and q

sfκ  is 
the corresponding smooth-focusing value.  For the choice 
of the quadrupole lattice model shown in Fig. 1 it is 
straightforward to demonstrate to leading order that ___________________________________________  
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( ) ( )321ˆ161 222
qqq

q
sf S ηκηκ −= . To model the adiabatic 

transition of the lattice, we adopt a simple model in which 
V(s) varies according to [1]                          

  ( ) ( )[ ][ ] ( )[ ] 1
21

1
21 exp1exp1 −− +−−+= trtr LLLsLsV , (2) 

where 2L1/2 is the length of the transition section, and Ltr 
is the characteristic length scale for variation of V(s). 

 The present approach for adiabatic formation of a 
beam quasi-equilibrium matched to a quadrupole lattice, 
can be generalized to the case of a periodic solenodial 
lattice. For the case of a solenoidal lattice, to maintain the 
average (smooth-focusing) effects of the total focusing 
field fixed, the transition of the applied lattice force is 
specified by           

( ) ( ) ( ) ( ){ }( )21 1 sol sol
sol sol sf sf sol x yF V s V s s x yκ κ κ δκ= − ⎡ − − ⎤ + +⎣ ⎦ e e , (3) 

where  κsol(s) is the solenoidal lattice coupling coefficient, 

 ( )∫
+

−=
Ss

s
solsol sdsS

0

0

1 κκ , (4) 

and ( ) ( ) solsolsol ss κκδκ −≡ . For the choice of the solenoidal 
lattice model shown in Fig. 1 it is straightforward to 
demonstrate that ( ) ( ) 2222 ˆ1121ˆ Ssssss

sol
sf κηηκηκ −+= . 

A similar approach for formation of a quasi-equilibrium 
beam distribution matched to a periodic focusing 
solenoidal lattice by means of adiabatic turn-on of the 
oscillating focusing field has been previously reported in 
[3]. However, the choice of the applied lattice force 
transition, Fsol¸(s), considered in [3] did not provide a 
constant average (smooth-focusing) value of the focusing 
force. Furthermore, small oscillations of the beam 
envelope with variations in the rms beam radius of the 
order of 1% were observed. In addition, δF simulations, 
rather than full PIC simulations, were performed in [3].  
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Figure 1: Periodic-focusing coupling coefficients 
corresponding to a quadrupole lattice, κq(s) (solid lines), 
and a solenoidal lattice, κs(s) (dashed lines). 

RESULTS OF THE NUMERICAL 
SIMULATIONS 

The results of the numerical simulations for illustrative 
parameters corresponding to a moderate intensity beam 
with σ/σv=0.5, propagating through the quadrupole and 
solenoidal lattices shown in Fig. 1, are presented in Figs. 
2-4. For the case of beam propagation through a 
quadrupole lattice, note that thermal equilibrium and 

waterbag equilibrium distributions have been used for the 
initial beam loading. To assure that matching is 
approximately maintained in the transition section, we 
choose L1/2=5Ltr, and take  L1/2=5Lsf for the quadrupole 
lattice case, and L1/2=10Lsf  for the solenoidal lattice case, 
where Lsf is the smooth-focusing period of the linear 
mismatched oscillations determined from [2] 

( ) ( )22 222 sfsf
vsf SL σσπ += , where sf

vσ  and sfσ  are the 
corresponding values of  phase advances calculated 
within the smooth-focusing approximation. Figure 2 
illustrates the discrete evolution of the normalized rms 
envelope x-dimension, 1 22

rmsX x≡  , calculated at the 
end of each focusing cell where the beam x-envelope has 
a local maximum value, Xmax. Here, <···> denotes the 
statistical average over the beam distribution function; 
and Xb0 used in the figures for normalization purposes 
corresponds to the initial (smooth-focusing) value of the 
rms envelope x-dimension. Along with the evolution of 
the beam parameters for the case of adiabatic turn-on of 
V(s) shown by the solid curves, Fig. 2 also shows the 
evolution of beam parameters (dashed curves) for the case 
where the initial distribution is loaded instantaneously 
into a periodic lattice with V(s)≡1. To load particles for 
this case, the smooth-focusing equilibrium distribution is 
first calculated, and then the positions and velocities of 
the beam particles are linearly scaled, providing the size  
 

Figure 2: Plots of Xmax/Xb0 versus number of lattice 
periods, Np. Frames (a) and (b) correspond to a 
quadrupole lattice with ηq=0.3, σv=570 (σv

sf=540), and 
the initial smooth-focusing beam equilibrium correspond 
to the thermal equilibrium and waterbag distributions, 
respectively. Frames (c) and (d) correspond to a 
solenoidal lattice with σv=840 (σv

sf=830) and σv=990 
(σv

sf=970), respectively; here ηs=0.3 and the initial 
smooth-focusing beam equilibrium corresponds to a 
thermal equilibrium distribution. The solid curves 
correspond to adiabatic turn-on of the lattice, and the 
dashed curves correspond to the case of instantaneous 
beam loading.  
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Figure 3: Plots of the beam density profile for the case of 
a quasi-equilibrium beam distribution matched to a 
quadrupole lattice with ηq=0.3 and σv=570. Frames (a) 
and (b), and frames (c) and (d) correspond to initial 
thermal equilibrium and waterbag distributions, 
respectively. The density profiles correspond to: the 
initial smooth-focusing thermal equilibrium (blue 
curve); the maximum value of Xrms (pink curve); and the 
minimum value of Xrms (green curve). 

 
Figure 4: Plots of the beam density profile for the case of 
a quasi-equilibrium beam distribution matched to a 
solenoidal lattice with ηs=0.3. Frames (a) and (b), and 
frames (c) and (d) correspond to σv=840

 and σv=990, 
respectively. The initial smooth-focusing beam 
equilibrium corresponds to a thermal equilibrium 
distribution. The density profiles correspond to: the initial 
smooth-focusing thermal equilibrium (blue curve); the 
maximum value of Xrms (pink curve); and the minimum 
value of Xrms (green curve). 

and the slope of the beam envelope to be consistent with 
the matched solution to the envelope equations [1]. Note 
that the frames in (a) in Fig. 2 illustrate the initial 
evolution of the beam mismatch for the case of 
instantaneous loading, and the evolution near the exit of 
the transition section, s≥L1/2, for the case of adiabatic 
formation of a beam quasi-equilibrium.  

It is evident from Fig. 2, for the case of adiabatic 
formation of the beam quasi-equilibrium, that the 
amplitude of the mismatch oscillations is reduced 
compared to the case of instantaneous loading of the 
beam distribution. Furthermore, note that the numerical 
scheme for instantaneous loading cannot intrinsically 
provide the detailed equilibrium, whereas for the case of 
adiabatic formation the beam mismatch can possibly be 
further suppressed if a finer grid and larger number of 
macroparticles are used in the simulations [1]. 

We now use the results of the numerical simulations for 
the case of adiabatic formation of the beam distribution to 
investigate properties of the beam density profile. Figures 
3 and 4 show the evolution of the beam density projected 
along the x-direction for the cases of the quadrupole and 
solenoidal lattices, respectively. The profiles are 
calculated within the first lattice period after the beam 
leaves the transition section, i.e., SLsL +<< 2121 22 .  
Note that plots in frames (a) and (c) show the normalized 
density profile ( ) ( ) ( )[ ] ( ) ( )[ ]0,0,,~

0
2
0 === rnsyxnRsbsasxn bbbb

 
plotted versus the scaled coordinate x/a(s). Here, 

( ) ( )sXsa rms2= , ( ) ( )sYsb rms2= , 
00 2 bb XR = , nb(x,y,s) is 

the beam density profile, and nb0(r) is the initial density 
profile corresponding to the azimuthally symmetric 
smooth-focusing equilibrium.  It is readily seen that the 
evolution of the beam density profile is self-similar for 
any choice of periodic lattice structure and initial beam 
distribution. In addition, it is interesting to note that for 
the case of a solenoidal lattice the self-similarity feature is 
preserved to good accuracy even for σv=990 , whereas for 
the case of a quadrupole lattice the self-similarity feature 
becomes less accurate for smaller values of vacuum phase 
advance (σv=87.50) [1]. 

CONCLUSIONS 
In this work we have continued the development of a 

numerical scheme for describing the quiescent loading of 
a quasi-equilibrium beam distribution matched to a 
periodic focusing lattice. The scheme was applied to both 
quadrupole and solenoidal lattices; and the thermal 
equilibrium and waterbag distributions have been 
considered for the initial beam equilibrium. Quiescent 
beam loading and self-similar evolution of the quasi-
equilibrium matched beam density profile have been 
observed in numerical simulations for general choice of 
periodic lattice structure and initial beam distribution. 
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