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Abstract

For ISAC at TRIUMF, radioactive isotopes are gener-
ated with a 500 MeV proton beam. The beam power is
up to 40 kW and can easily melt the delicate target if too
tightly focused. We protect this target by closely monitor-
ing the distribution of the incident proton beam. There is a
3-wire scanner monitor installed near the target; these give
the vertical profile and the +45◦ and −45◦ profiles. Our
objective is to use these 3 measured projections to find the
2-D density distribution. By implementing the maximum
entropy (MENT) algorithm, we have developed a computer
program to realize tomographic reconstruction of the beam
density distribution. Of particular concern is to make the
calculation sufficiently efficient such that an operator can
obtain the distribution within a few seconds of the scan. As
well, we have developed the technique to perform phase
space reconstruction, using many wire scans and the cal-
culated transfer matrices between them. In this paper we
present details of the computer code and the techniques
used to improve noise tolerance and compute efficiency, af-
ter reviewing the MENT algorithm.

MAXIMUM ENTROPY TOMOGRAPHY

Tomographic reconstruction algorithms offer the possi-
bility to reconstruct higher dimensional density distribution
from a series of projections measured in a lower dimen-
sional subspace. In the absence of a large number of pro-
jections, the Maximum Entropy (MENT) algorithm [1] can
reconstruct a distribution that maximizes the entropy and
simultaneously reproduces all the measured projections ex-
actly. In other words, MENT can find a most probable solu-
tion with minimized artifacts to describe the observed data.
This has proven to be superior in the case where there are
only a few projections available.

We will only be dealing with 2-D distribution here. Let
f(x, y) be the source distribution. It satisfies

f(x, y) ≥ 0 and
∫ ∫

f(x, y)dxdy = 1 (1)

The projection P (x) of this distribution on the x-axis is
defined by

P (x) =

∫ +∞

−∞
f(x, y)dy (2)

The input data for tomographic reconstruction is a set of
such projections onto N different s-axes defined by a set
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of transformation matrices Ri (i = 1, 2, ..., N ):
(
s
t

)
= Ri

(
x
y

)
=

(
a b
c d

)
i

(
x
y

)
(3)

The transformation matrixRi can be a rotation matrix, used
for real space reconstruction, or the beam transport matri-
ces for reconstruction of phase space density. It conserves
the area of the source distribution because det(Ri) = 1.
Using the inverse transformation from the ith projection
coordinates (s, t) back to the (x, y) source plane, the ith

projection is represented as

Pi(s) =

∫ +∞

−∞
f [xi(s, t), yi(s, t)]dt (4)

The goal is to invert Eq. 4 and determine the function
f(x, y). However, the inversion is not unique unless the
number of projections N is infinite. For a finite number of
measurements, many different distributions exist that can
reproduce all the measured projections. Out of these distri-
butions, the one that maximizes the entropy

E(f) = −
∫ +∞

−∞

∫ +∞

−∞
f(x, y) ln f(x, y)dxdy (5)

and satisfies the boundary conditions of Eq. 4 is the most
appropriate one, because it contains the least information.

The extended entropy function, with boundary condi-
tions, can be written as

ε(f, λ) = E(f)−
N∑
i=1

∫ +∞

−∞
λi(s)[f(xi, yi)dt−Pi]ds (6)

where xi and yi are functions of s, t, and where the λi(s)
denotes the Lagrange multiplier functions. The conditions
for the stationary solution are

∂ε(f, λ)

∂λi
= 0 and

∂ε(f, λ)

∂f
= 0 (7)

The first condition in Eq. 7 is in fact equivalent to the con-
straints defined by Eq. 4, whereas the second one gives

ln[f(x, y)] =

N∑
i=1

λi − 1 or f(x, y) =

N∏
i=1

Hi (8)

where the unknown Lagrange multipliers λi have been re-
placed by the equally unknown functions Hi = exp(λi −
1/N). The arguments of these functions are si = aix+biy,
completely determined by the projection. So, the task is
merely to find these H-values for the equation.
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Since the measured projections are received as discrete
rather than continuous distributions, it’s natural to formu-
late a binned projection as following

Gij =

∫ si(j+1)

sij

Pi(s)ds =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)Γijdxdy

(9)
where Γij denotes a characteristic function

Γij(s) =

{
1 sij ≤ s ≤ si(j+1)

0 otherwise
(10)

Therefore, Eq. 8 can be written as

f(x, y) =
N∏
i=1

Mi∑
j=1

HijΓij (11)

Substituting Eq. 11 in Eq. 9 gives an iteration relation for
the factors Hij

Hij =
Gij∫ ∫

dxdyΓij{
∏N

k �=i

∑Mk

l=1 HklΓkl}
(12)

After the H-factors are computed, they can be substi-
tuted back into Eq. 8 to compute the distribution function
f(x, y).

COMPUTER PROGRAM

We implemented the MENT algorithm and developed
a computer program [2][3] in C/C++ at TRIUMF from
scratch to accomplish tomographic reconstruction of beam
density distribution. Our program is stand-alone, indepen-
dent of any external libraries. Of particular concern is to
make the program robust and sufficiently efficient such that
one can obtain the distribution within a few seconds of the
scan. First of all, the conditions defined in Eq. 1 imply that
the input projection profiles must have non-negative back-
ground and must be normalized to one, namely, Gij ≥ 0

and
∑Mi

j=1 Gij = 1. However, the input data are usually
noisy, and even spiky and also inconsistent in terms of the
intensities from different projections. Therefore, it’s cru-
cial to pre-process the data before feeding them into the
MENT routine.

Data Pre-processing

Data pre-processing is composed of two major steps in
our program: statistics calculation and FFT smoothing. In
details:

• Calculate the 2rms size T and centroid C so as to de-
termine a proper window for efficient smoothing with
FFT. Only the data within a window between C − 2T
and C + 2T are retained for next use; everything out-
side is discarded. C and T are calculated by sampling
an area with no signal to determine offset and 2rms
noise, subtracting the offset, cutting off the 2rms noise

level in the background and then removing isolated
spikes. But in this step, we actually do not make any
changes (subtraction or cut) to the data in the retained
window.

• Do FFT to smooth the retained data using a low-pass
filter. The cut-off frequency of the filter is one of the
input parameters that is allowed to change by the user.
The profile after being smoothed may still have non-
zero offset and wiggles in the background. So, next
we subtract this offset and then make a 2rms cut to
zero off everything in the background. This results
in a clean profile with zero background to pass on to
the MENT function for tomographic reconstruction.
However, the noisier the data, the more of the distri-
bution tails will be unavoidably deleted.

Test Runs

One of the test runs [3] we made was specifically re-
lated to the profile monitor near the ISAC target, which
measures only three projections: ±45◦ and vertical. This
example deals with a distribution of a Gaussian core plus
an asymmetric halo, moreover, this Gaussian core is tall
and narrow: the vertical rms size is 3 times the horizon-
tal one. The reconstruction from the 3 profiles gives dis-
tribution function f(x, y) correct to within 15% (standard
deviation). This is shown in Fig. 1.

Another test was for phase space reconstruction, related
to the measurements in the TRIUMF injection line. In this
test, we used a crescent shape to represent the initial phase
space of beam, instead of a regular elliptical shape. This
phase space was transformed through a quadrupole to a lo-
cation downstream. For a specified quad setting, a profile
was obtained from projection on the x-axis. There were
12 profiles simulated; these, along with the correspond-
ing transfer matrices, were fed into the MENT program to
reconstruct the initial phase space. Fig. 2 shows the re-
sult. The crescent shape is very well reproduced. Also, an
important conclusion from this exercise is that in order to
reveal the crescent result, the phase advance between the
source point and the observation point must be made large
enough, i.e. ≥ 90◦, and over this ≥ 90◦ phase advance, the
more projections one uses, the more precise reconstruction
result one can achieve.

APPLICATIONS

Our program has been incorporated into the cyclotron
and beamline central control computer to accomplish on-
line monitoring of the beam distribution near the ISAC tar-
get. Within ∼ 5 seconds of a scan, an operator can ob-
tain the result. Fig. 3 is an example snapshot, showing the
3 projections measured and the reconstructed 2-D contour
plot and H,V distributions.
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Figure 1: Illustration of the first test made to the tomog-
raphy program for the real space reconstruction, using a
narrow Gaussian core plus an asymmetric halo as is shown
on top as 3-D surface plot (left) and contour plot (right).
The reconstructed result is shown in the middle. The 3 pro-
jections that were fed into the program and reconstructed
from the program are shown at bottom.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8

x (inch)

y 
(m

ra
d)

−0.4
−0.2

0
0.2

0.4

−5

0

5
0

200

400

600

800

1000

y (mrad)

x (inch)

di
st

rib
ut

io
n

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8

x (inch)

y 
(m

ra
d)

−0.4
−0.2

0
0.2

0.4

−5

0

5
0

200

400

600

800

1000

y (mrad)

x (inch)

di
st

rib
ut

io
n

Figure 2: Illustration of the second test made for the phase
space reconstruction, using a crescent shaped initial phase
space as is shown on top as surface plots. The reconstructed
result is shown at bottom. Here the phase advance is > 90◦

between the source location and the observation location.
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Figure 3: A snapshot of MENT program online applica-
tion, displaying the 3 measured projections and the recon-
structed 2-D contour plot and H,V distributions.
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