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Abstract 
The betatron tunes of an electron storage ring may be 

measured by driving transverse oscillations with an 
excitation electrode and measuring the resonant beam 
response with a pickup electrode.  We model the damping 
of coherent betatron oscillations from the tune spread and 
radiation damping, finding that the tune signal is 
proportional to the square root of the product of the 
betatron functions at the excitation and pickup locations.  
The signal is independent of the betatron phase advance 
between the two locations.  Our results are applied to the 
Aladdin 800-MeV electron storage ring. 

INTRODUCTION 
To analyze the measurement of betatron tunes by using 

driven resonant transverse oscillations, the damping of 
coherent oscillations from the tune spread and radiation 
damping is considered.  For a single-peak tune 
distribution that may be approximated by a Cauchy 
distribution, the phase-mix damping causes an 
exponential decay of coherent betatron oscillations, so 
that both the tune spread and radiation damping are 
approximated by exponential decay.  For a small driven 
oscillation from a tune excitation electrode, we find an 
analytic formula for the beam response at the position of a 
tune pickup electrode. 

DRIVEN OSCILLATIONS 
Consider a driven horizontal or vertical oscillation in a 

storage ring with no horizontal-vertical coupling or 
chromaticity.  A kick that bends the orbit through the 
angle θ  at the longitudinal position 0=s  at time 0=t  
gives excitations at the location [ )Cs ,0∈ , where C  is the 

ring circumference, arriving at times ,/0 csnTt +=  

∞= ...1,0n , where 0T  is the recirculation time and c  is 

the speed of light. 
When the radiation damping and tune spread are 

neglected, the excitation arriving at time csnT /0 + , 

given by eqs. (2.57) and (2.58) of Ref. [1], is 

)](2sin[)()0()( snssxn ψ+πνθββ= β .                 (1) 

Here, )(sβ  is the betatron function, βν  is the betatron 

tune, and )(sψ  is the betatron phase at the pickup location 

minus the betatron phase at the excitation location.  With 
radiation-damping rate Rα , the excitation becomes 

)]/(exp[)](2sin[)()0()( 0 csnTsnssx Rn +α−ψ+πνθββ= β . (2) 

For tune spread resulting from a distribution of angular 
betatron frequencies )( βωf , with nominal betatron 

frequency 0βω , the complex decoherence function may 

be defined as [2] ∫ ω−ωωω≡ ββββ ])(exp[)()(ˆ
0 tifdtD . 

The excitation of the beam centroid, including the effect 
of radiation damping and decoherence from tune spread is 
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For time-dependent excitation )(tθ , the response of the 

beam centroid is 
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For a Cauchy (also called Lorentzian) distribution of 
angular betatron frequencies with half-width βδω , 

])()/[()/()( 22
0 βββββ δω+ω−ωπδω=ωf , coherent 

oscillations decay exponentially from phase-mix damping 

[3] so that )||exp()(ˆ ttD βδω−= .  Thus, the beam 

response is 
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where βδω+α=α R  is the total damping rate from 

radiation damping and tune spread. 
For a periodic excitation )cos()( 0 φ+ωθ=θ tt , 
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Equation (6) may be written in complex notation as 

,)](2sin[

)()0(),(

0
)/)((

)(
0

0∑ ψ+πν×

ββθ=
∞

= β
+α−ω−

φ+ω

n
nTcsii

ti

sne

estsx
    (7) 

where the real part of ),( tsx  is the physical oscillation. 

Writing the sin term as the difference of two 
exponentials and using the relation π=ω 200T , where 

0ω  is the angular revolution frequency, we have 
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which may be written as 
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Defining the tune of the driving frequency ω  as 
πω=ν 2/0Td  gives 
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Equation (11) is our main result.  The real part of Eq. (11) 
describes driven oscillations with the effects of radiation 
damping and the tune spread of a Cauchy distribution.  

When the values of βν±νd  differ from all integers by 

much more than πα 2/0T  (which requires that 

12/0 <<παT ), the damping may be neglected.  In this 

case, eq. (11) becomes 
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in agreement with the ac-dipole theory of Refs. [4–7], af-
ter accounting for missing phase factors.  When damping 
can be neglected and 0ω=ω n  (so that nd =ν ), we have 
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For the special case 0=φ=ω  (so that 0=ν d ), eq. (13) 

reproduces the closed-orbit disturbance 

)sin(/])(cos[)()0()2/(),( 0 ββ πνπν−ψββθ= sstsx ,   (14) 

given by eq. (2.92) of Ref. [1], [where eq. (2.92) is 
corrected, according to the SLAC-121 Addendum of May 
1979, by multiplying by 1− ].  In eqs. (13) and (14), the 
amplitude depends upon the betatron phase advance )(sψ  

between the excitation location and the pickup location. 
Now consider the measurement of betatron tunes by 

resonant excitation, where the damping from radiation 
damping and tune spread cannot be neglected.  When 

nd ≈ν−ν β  for some integer n , while βν+νd  differs 

from all integers by much more than || nd −ν−ν β , the 

first term in eq. (11) dominates so that 
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 The amplitude of the oscillation at driving tune dν  is  

|]2/)(sin[|/)()0()4/( 00 Tis d α−ν−νπββθ β .   (16) 

The largest oscillation occurs for resonant excitation with 
nd =ν−ν β , with amplitude 

00 2/)()0( Ts αββθ .                         (17) 

For resonant excitation, the amplitude at the pickup does 
not depend upon the betatron phase advance )(sψ . 

The above analysis has considered a periodic single-
frequency oscillation.  When the tune is measured by 
sweeping the excitation angular frequency at rate dtd /ω , 
a rule of thumb for a swept-frequency spectrum analyzer 
indicates that the measurement bandwidth mωΔ  obeys 

dtdm /2)( 2 ωπ≈ωΔ .  For spectral features with width 

dtdm /2 ωπ≈ωΔ>>ωΔ , the response obeys the above 

theory for a periodic single-frequency oscillation.   
The minimum sweep time for measurement of a feature 

with bandwidth ωΔ  occurs when the frequency is swept 

over a range ~ ωΔ  in time τ  with τωΔπ≈ωΔ /2)( 2 , i.e. 

ωΔπτ /2~ .  Therefore, measuring the tune peak and its 
width at βν=νd , where α≈ωΔ , requires a minimum 

sweep time τ  of ~ απ /2 .  
Measuring the beam response at a driving tune 

βν≈νd , where 00 /|]2/)(sin[|2 TTid α−ν−νπ≈ωΔ β , 

requires sweep time ~ ( )|]2/)(sin[|2/2 00 TiT d α−ν−νππ β .  

This is comparable to the required measurement time 
when ramping the amplitude of a single-frequency 
excitation [6]. 

ALADDIN 
The betatron tunes of the Aladdin 800-MeV electron 

storage ring are measured with excitation and pickup 
electrodes oriented at 45° with respect to the horizontal 
direction. To install an undulator, the excitation electrode 

was moved to a new location where the values of xβ  

and yβ  are within 30% of their values at the old 

location.  Moving the tune excitation electrode is 
predicted to modify the tune signals by less than 30%, 
which is inconsequential for ordinary operations.  As 
expected, moving the excitation electrode did not impact 
the measurement of betatron tunes. 

TH6REP064 Proceedings of PAC09, Vancouver, BC, Canada

4100

Instrumentation

T03 - Beam Diagnostics and Instrumentation



The radiation damping time constants are ~30 ms, 
while the decoherence of betatron oscillations occurs over 
~1000 turns = 0.3 ms [8].  The damping rate from both 

radiation damping and tune spread is 1)ms3.0(~ −α .  

Thus, the sweep time required for measurement of a 
single tune peak and its width is ~ ×π2 0.3 ms.   

For the horizontal tune peak with 1)ms3.0(~ −α , 

s1096.2 7
0

−×=T  and m4~)(~)0( sxx ββ , eq. (17) gives 

a peak oscillation amplitude (in meters) of 02000 θ , 

where 0θ  is the peak deflection from the excitation 

electrode in radians.  For vertical tune measurement with 
m7.0~)(~)0( sxx ββ ,  the peak oscillation amplitude is 

0350 θ .  For a given value of 0θ , the horizontal peak is 

expected to exceed the vertical peak by 
dB.15)350/2000(log20 =  

To measure both tune peaks and their widths with a 
constant-rate sweep over the angular frequency range 

)(0 xy ν−νω )139.7234.7)(MHz4.3)(2( −π= 6102×= rad/s, 

we expect that the minimum required sweep time τ  obeys 

τ×=ω /)rad/s102(/ 6dtd  π≈πωΔ≈ − 2/)ms3.0(2/)( 22 , 

i.e. s.1≈τ   

We operated the Aladdin storage ring with 
approximately zero chromaticity by tuning the two 

sextupole families near the thresholds of horizontal and 
vertical head-tail instability.  With zero chromaticity, the 
horizontal and vertical tune signals are single peaks that 
can be approximated by our analysis of Cauchy 
distributions of betatron frequencies.  Measurements 
shown in Fig. 1 confirm that a minimum sweep time of 
~1 s is required to measure both tune peaks and their 
widths, while the horizontal peak exceeds the vertical 
peak by 15 dB. 

SUMMARY 
We analyzed the measurement of betatron tunes by 

driving transverse oscillations with an excitation electrode 
and detecting the beam response with a pickup electrode.  
We considered radiation damping and the phase-mix 
damping of Cauchy distributions of betatron frequencies. 

For resonant excitation, the tune signal is proportional 
to the square root of the product of the betatron functions 
at the excitation and pickup locations.  The signal is 
independent of the betatron phase advance between the 
two locations. 

For measurement of the tune peaks and their widths at 
the Aladdin 800-MeV electron storage ring, our analysis 
successfully predicts the minimum required sweep time 
and the ratio of the horizontal and vertical peak heights. 
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Figure 1.  Aladdin tune measurements performed by 
sweeping the frequency of driven transverse 
oscillations at a constant rate.  (a)  Sweep time = 10 s.  
(b)  Sweep time = 1 s.  (c)  Sweep time = 100 ms.  
(d)  Sweep time = 10 ms. 
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