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Abstract

This paper describes the implementation of a neural net-
work hybrid controller for energy stabilization at the Aus-
tralian Synchrotron Linac. The structure of the controller
consists of a neural network (NNET) feed forward con-
trol, augmented by a conventional Proportional-Integral
(PI) feedback controller to ensure stability of the system.
The system is provided with past states of the machine in
order to predict its future state, and therefore apply appro-
priate feed forward control. The NNET is able to cancel
multiple frequency jitter in real-time. When it is not per-
forming optimally due to jitter changes, the system can suc-
cessfully be augmented by the PI controller to attenuate the
remaining perturbations.

INTRODUCTION

With a view to control the energy and bunch length at the
FERMI@Elettra Free Electron Laser (FEL) [1], the present
study considers a neural network hybrid feed forward-
feedback type of control to rectify limitations related to
feedback systems, such as poor response for high jitter
frequencies or limited bandwidth [2], while ensuring ro-
bustness of control. The Australian Synchrotron Linac is
equipped with a beam position monitor (BPM), that was
provided by Sincrotrone Trieste from a former transport
line thus allowing energy measurements and energy control
experiments. The present study will consequently focus on
correcting energy jitter induced by variations in klystron
phase and voltage.

BACKGROUND ON NEURAL NETWORKS

A NNET consists of an interconnected group of artificial
neurons as shown in Fig. 1. Each neuron receives stimuli
from other nodes in the network and each of these inputs
to a node has a “weight”w associated with it as well as
an activation function, which tells a node when to fire. A
neuron may also add a “bias” valueθ, with the weighted
inputs and any bias is passed through the activation func-
tion; the resulting value is available as the node output.
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Commonly used activation functions are linear, hyperbolic
tangent, sigmoid, or gaussian. Gaussian networks are also
known as “Radial Basis Function Networks” (RBFN) due
to the radial nature of the activation function [3, 4].

Figure 1: Schematic of an artificial neuron. The node re-
ceives inputs from other nodes which are multiplied by
their respective weights and fed into the activation func-
tion.

During the training phase, the network is presented with
an input vector and the resulting output vector is compared
to the desired output vector; the network weights are then
adjusted by a learning algorithm.

EXPERIMENT

Electrons are emitted by a 90 kV DC gun and bunched
by successively passing through a 500 MHz sub hormanic
pre buncher (SPB), a 3 GHz primary buncher (PBU), and a
3GHz final buncher (FBU) as shown in Fig. 2. They then go
through the two main 3 GHz accelerating sections (ACC1
and ACC2) where they gain most of their energy to reach
100 MeV (see [5] for a detailed description of the Linac
structure).

Figure 2: Schematic of the Linac RF components and
BPM.
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Figure 3: Control scheme consisting of a predictor (left block), connected in series to a control algorithm (right block).
The predicted deviationdx(k + 1) is used by the control algorithm in the right block to computeforward (first term) and
feedback (second and third terms) corrections, with user specified gains (Pg andIg) and sum range (R).

The experiment consists of exciting a multi frequency
jitter in the first klystron phaseφ1 and voltageV1 to in-
duce energy deviation and thus horizontal deviation at the
BPM. The klyston 1 phase and voltage and the BPM read-
ings were recorded in order to train a hyperbolic tangent
network (HTN) and a RBF network to act as predictors for
future pulse deviation.

CONTROL SCHEME

The controller scheme is as shown in Fig. 3. It consists of
a neural network predictor [6] and a control algorithm. The
delay operatorD in Fig. 3 provides the predictor withm
delayed input values of the first klystron voltageV1, andn

delayed input values of the phaseφ1. For example, for the
pulse numberk in a time series, thepth delayed phase ele-
ment is given byD(−p)(φ(k)) = φ(k − p) with p=1,2,..n.
The NNET output is a prediction of the future position de-
viationdx(k + 1).

The chosen control algorithm is based on a PI algorithm,
where the gainsPg, Ig and the number of elementsN in
the sum are chosen externally. The factorM is the re-
sponse coefficient of the deviation to the klystron voltage
(in mm/kV).The idea is to provide a control proportional
to the predicted variation, completed by a feedback term to
ensure stability.

REAL TIME CONTROL RESULTS

Hyperbolic Tangent Network Control

The network was trained over a set of 200 pulses with
excited jitter of 0.01 Hz, 0.05 Hz and 0.02 Hz, each of
0.06 kV amplitude (see recorded data in Fig. 4, upper
plots). The network consists of 6 hidden neurons receiv-
ing 6 lagged values ofV1 and 2 lagged values ofφ1 as its
inputs. The online control results are given in Fig. 4 (mid-
dle plots), where it appears that the remaining noise is of

the background level. The Fourier analysis in Fig. 4 shows
that there is no obvious jitter frequency component remain-
ing.

As a second test, the network was trained over a set of
24 samples with frequencies ranging from 0.01 Hz to 0.05
Hz and of amplitudes ranging from 0.04 kV to 0.06 kV.
The network was then tested in real time by inducing fre-
quencies and amplitudes different from the training set, but
included within the training range. For each sample test,
all frequencies were suppressed and the remaining rma de-
viation was equivalent to the background level. This shows
the ability of the network to interpolate its prediction when
frequencies are encountered which are different from the
training set, but included within the training range.

Radial Basis Function Network Control

The RBF network was trained using the same sample
data as was used for the HTN. The trained network con-
sisted of 76 hidden neurons. Although the residual noise
is slightly higher than for the hyperbolic tangent network,
Fourier analysis reveals that the frequency components
were successfully eliminated (see lower plots in Fig. 4).

The controller was then trained and tested over the same
set of 24 samples as the HTN. The same 16 jitter config-
urations were tested over 250 pulses. Results showed the
successful cancelation of all frequencies for all samples.

Feed Forward-feedback Combined Control

To minimize the remaining jitter in situations were the
NNET predictions are not accurate enough to totally can-
cel the perturbation, the feed forward control is augmented
by the PI control as shown in Fig. 3. The combination of
feed forward-feedback will ensure stability of the system,
in those situations where the network is not performing op-
timally; in this case its mis-predictions can be compensated
by the feedback term.
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Figure 4: Example of real-time control over 1000 pulses, forvoltage jitter of 0.06 kV amplitude and frequencies of 0.01
Hz, 0.05 Hz and 0.02 Hz. The upper plots give the recorded BPM readings (left) and the corresponding FFT (right) without
control. The middle and lower plots give the BPM reading and the corresponding FFT when the control is operated with
the HTN and RBF network, respectively.
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Figure 5: FFT for PI, NNET and combined controls, with jitterof 0.1 kV at 0.06 Hz.

The PI gains were then roughly tuned with no additional
control from the neural network. To evaluate the system
response, the network was brought on real time to correct
jitter with frequency and amplitude different to the training
set. A jitter of 0.1 kV and 0.06 Hz was excited. Results
in Fig. 5 show that peak at 0.06 Hz is further decreased.
The combined control showed a better reduction of the rms
deviation and the FFT peak value than the NNET or the PI
controller did alone.

CONCLUSIONS

Experiments in a real accelerator environment showed
the capability of HTN and RBF networks to operate as pre-
dictors in a multi frequency cases. The training of the net-
works over a whole range of frequencies and amplitudes
(0.01 Hz to 0.05 Hz and 0.04 kV and 0.06 kV) showed the
networks’ capability to interpolate their predictions. The
network was also successfully complemented with a con-
ventional PI algorithm to ensure stability and improve con-

trol when the network predictions are inaccurate. Research
will be pursued towards building a NNET hybrid controller
for the FERMI@Elettra FEL.
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