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Abstract 
Thin carbon foils used as a charge strippers for H־ ions 

have a limited life time and produce uncontrolled beam 
loss. Thus, foil based injection is one of the factors 
limiting beam power in high intensity proton rings. There 
is a possibility to replace such foils by laser-assisted 
stripping of negative hydrogen ions, a method developed 
and demonstrated at the SNS accelerator in Oak Ridge. In 
this paper we present progress in the physics and 
computation of H־ laser stripping. We present a physical 
model which includes such factors as the Stark effect, the 
polarization of the laser field, and the spontaneous 
relaxation and autoionization of hydrogen atoms in a 
strong electro-magnetic field. The model formulates a 
quantum mechanical problem that can be solved 
numerically using a module created for the PyORBIT 
parallel code developed at SNS. 

INTRODUCTION 
The future power upgrade of the SNS accelerator [1] 

faces challenges related to the existing foil based ring 
injection. Currently, thin carbon foils provide conversion 
of H־ ions to the protons beam for injection into the ring. 
Problems can arise when high average beam currents pass 
through the foil. This can lead to a shorter lifetime of the 
foil, higher absolute beam losses, and facility activation. 
These shortcomings complicate the maintenance, and are 
considered to be a very serious factor for multi-MW 
proton facilities of future. Similar problems are also 
expected to show up in other projects [2]. 

Recently, laser assisted stripping of H־ ion beam (LS) 
has attracted attention [2] as a good alternative to 
stripping foils. The proof-of-principle of the LS has been 
successfully demonstrated at SNS in Oak Ridge [3]. The 
next experimental steps [2] require a physical model that 
includes all factors and phenomena affecting the final LS 
efficiency. This model is also necessary for optimization 
of the LS installation. In this paper we present such a 
model and the computational results for the SNS project. 

The excitation of H0 hydrogen atoms from the ground 
state to the upper states by the laser beam is the most 
critical and theoretically complicated part of LS, defining 
efficiency of LS in general. In the theoretical 
investigation [4] that has become a foundation for the 
proof-of-principle experiments [3], the hydrogen atom is 
presented as a non perturbed (1s-3p) two-level atom. A 
laser field for numerical estimations was presented as a 
round Gaussian beam. For the H0 beam, the realistic SNS 
emittance [5] was used. The proof-of-principle 
experiment confirmed the validity of this model. 

The LS setup for the next experimental step includes 
two strong dipole magnets for Lorenz stripping of two 

electrons. Hence, laser excitation of the H0 beam located 
between these magnets is affected by the magnetic field 
and the Stark effect taking place in a particle rest frame 
(PRF), and should be included in the model of LS. The 
calculation of the energy levels and the lifetime of the 
hydrogen atom in a strong electric field is a difficult 
theoretical problem itself. For the Stark effect calculations 
we used a numerical approach found in references [6, 7].  

Exited atoms travelling after the excitation are affected 
by spontaneous emission. If emission occurs, atoms will 
not be stripped of their electrons and will be lost from the 
injection process. This loss will reduce the total efficiency 
of LS and should be included in the model for further 
optimization. 

Another improvement of the LS physical model [2] is a 
more realistic description of the laser beam. The initial 
model assumed a round Gaussian laser beam which is not 
expected to be present in future experiments. The real 
laser beam consists of an infinite number of modes 
including an elliptical Gaussian mode which makes up the 
most of the beam. 

Finally, the new physical model has been implemented 
as a module in the PyORBIT parallel code. The Python 
programming language driving shell allows a fast 
estimation and optimization of the LS efficiency for 
different parameters and features of a given LS scheme. 

In this paper we will present the description of the 
physical model of LS including the effects listed above. 
We will also discuss several examples of computations for 
the SNS project with a new application. 

PROBLEM DEFINITION 
According to the three-step scheme of LS [4], the first 

stripping magnet provides conversion of an H־ beam to an 
H0 beam. As a result, we have H0 ground-state beam that 
has to be excited in the second step. Omitting the first 
step we consider the H0beam as the initial condition of the 
subsequent problem of finding the LS efficiency related to 
steps 2 and 3. The problem can be formulated in the 
following way: We need to find the probabilities of 
ionisation H0→p+e־ as a function of time pi(t)  for i-th 
particle of the beam travelling through the superposition 
of static electric and laser fields. The functions allow 
calculating the number of protons and their initial 
conditions {r0, p0}i. The ratio of the number of protons to 
the number of initial H0 atoms yields the total LS 
efficiency. Thus, we can calculate ring injection process. 

To solve this problem, consider the evolution of quasi 
stationary wave functions Ψ(r, t) of the electron in the 
PRF of i-th hydrogen atom. The wave function of the 
atom can be found independently for each atom and then 
used to calculate the probability function: 
p(t) = 1 - ! Ψ*(r, t)Ψ(r, t)d3r. The solution Ψ(r, t) can be 
presented in the form of an eigenfunction expansion: *ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. 
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where N is the number of states of the hydrogen atom 
involved in the dynamics. 

The atom travelling in a static transverse magnetic field 
in the laboratory frame is affected by a static electric field 
in the PRF. We use the quasi-stationary wave functions of 
the H0 atom in the electric field as eigenfunctions for (1). 
Thus, we should solve the Stark effect problem first and 
then find the eigenfunctions ψn(r) and complex 
eigenenergies En = E0n - iΓn/2 [6, 7] as functions of the 
electric field E. It should be noted that we included the 
time factors exp[-i(E0n - iΓn/2)t/ħ] of the stationary states 
ψn in the coefficients cn(t). For solving the Stark effect 
problem it is required that z-axis of the PRF to be parallel 
to the electric field. 

The amplitudes cn(t) in (1) evolve depending on the 
laser field. According to the initial condition mentioned 
above, we should assume that cn(t0) = δ1n, because ψ1(r) 
is the wave function of the ground state. It is enough to 
include in (1) only states with real energies En satisfying 
En - E1 d ωħ where ω is the laser frequency in the PRF. 
The validity of the reduction is conditioned by the 
resonance process (which can be shown mathematically). 
The resonant process allows exciting only upper states 
ψ1(r)→ψn(r) with energies En - E1 ≈ ωħ that 
spontaneously decay further into lower states 
ψn(r)→ψk(r) with energies Ek < En. For example, if we 
excite the 3rd energy level of hydrogen atom then we 
should include N = 12+22+32 = 14 Stark states into (1). 

To find the wave function Ψ(r, t) we need to find cn(t) 
by using different approaches which depend on the 
requirements of the particular problem. There are two 
equations that can be applied.  

SCHRODINGER EQUATION 
It is known that the phenomena of spontaneous 

emission cannot be included within the framework of the 
Schrodinger equation (SE). Nevertheless, the SE can be 
applied in cases where the spontaneous decay time is 
much longer then the time of the atoms interaction with 
the laser field. Then, the SE can be used to estimate the 
efficiency of the excitation. The SE for H0 atom in the 
PRF can be written as: 
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where ĤE = Ĥ0 - μzEz is the Hamiltonian of the hydrogen 
atom in a uniform electric field E = Ezêz directed along 
the z-axes and V {(t) = -μ·E(t) represents the interaction 
between an electron with a dipole moment μ = qr and the 
laser field E(t). Applying a well known method [8] to 
solve the equation (2) and recalling that 
ĤEψn = (E0n - iΓn/2)ψn, we obtain a system of differential 
equations for cn(t): 
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where Vmn(t) = ! ψ*

m(r)V {(t)ψn(r)d3r. It is difficult to 
compute the equations (3) directly because of the high 
frequency of oscillation of the cn(t) coefficients. The final 
system of equations can be obtained using a change of 
variables cn(t) = an(t)exp[-iE0nt/ħ], presenting the laser 
field in a complex form and applying the rotating wave 
approximation, thereby neglecting of rapidly oscillating 
terms in the sum. 

The LS project at SNS in Oak Ridge aims to use the 3rd 
energy level for the laser excitation. The time of 
interaction of the 1 GeV hydrogen beam with the laser 
field located in 1 mm region is approximately 10-12 sec 
which is much less then a typical time of a spontaneous 
decay τ3p→1s = 6.1ä10-9 sec. In this case the SE can be 
applied to the computation of the excitation efficiency. 

MASTER EQUATION 
After excitation the beam travels a distance of 

10-20 cm through the second stripping magnet (the 3rd 
step of LS). In this step the efficiency of LS will be 
reduced by a few percent due to spontaneous decay. For 
this part of the LS the density matrix formalism can be 
applied. 

The density operator for the hydrogen atom described 
by the wave function (1) can be written as ρ [ = |ΨÚ‚Ψ|. A 
calculation of the density matrix (DM) elements yield: 
ρnm(t) = ‚ψn | ρ [ | ψmÚ = cn(t)c

*
m(t). The DM completely 

defines the state of the Hydrogen atom. Substituting (1) 
into the definition of the ionization probability function 
we obtain, 
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The evolution of the density operator obeys the 

equation: 
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where the curly brackets denote an anti-commutator, and 
G is an operator of autoionization with matrix elements 
Gnm = δnmGn. The operator D{ρ [} is a dissipation operator 
responsible for spontaneous transitions. The equation for 
the DM elements ρnm(t) is called the Master Equation 
(ME), and can be obtained via equation (5). In the case of 
a non-degenerate system (a hydrogen atom in an electric 
field) it is permissible to use the Pauli form of the D{ρ [} 
operator in combination with parabolic Stark eigenstates 
ψn(r). It should be noted that the Pauli form is not valid 
for the degenerate system (an unperturbed hydrogen 
atom) in combination with parabolic eigenstates ψn(r) [9]. 

If the SE was used prior to the ME for calculation of 
the same hydrogen atom then the initial condition for the 
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DM can be easily obtained from the solution of the SE: 
ρnm(t0) = cn(t0)c

*
m(t0). The ME can also be used for 

calculations of complete dynamics of the hydrogen atom 
including steps 2 and 3, beginning from the ground state. 
In this case ρnm(t0) = δ1n δ1m. 

The main reason to avoid using the ME where possible 
is the long computation time compared with the SE and 
the two-level model [4]. For example, computation of LS 
with excitation of the 3rd energy level of an atom requires 
including 14 Stark levels into the problem. In turn, it 
leads to a system of 14ä14 = 196 equations using the ME 
whereas using the SE and the two-level model leads a 
system of 14 and 2 equations correspondingly. 

SIMULATION PACKAGE 
For the computation of the Stark effect a separate 

computer application was created. The application uses 
the method of Breit-Wigner parametrization [6] to 
provide a high degree of accuracy for complex 
eigenvalues at moderate fields. For calculations of 
eigenfunctions a first order perturbation theory [10] was 
applied. For the strong fields needed for Lorentz stripping 
of the second electron it is necessary to use an exact 
numerical solution [7] based on the original definition [8] 
of the complex eigenvalues and quasi-stationary 
eigenfunctions. 

The application for the computation of LS was 
developed as an extension to the PyORBIT parallel code 
[11]. 

SOME CALCULATIONS FOR THE SNS 
We now present calculations for the laser beam 

recirculation scheme proposed in [12]. A realistic laser 
beam was approximated by an elliptical Gaussian mode 
[13]. The emittance of the initial H0 beam was taken from 
[5]. The angle of incidence between the laser beam with 
wavelength λ = 355 nm and the H0 beam with energy 
T = 1 GeV was set to provide the exact resonance 
excitation of the 3p level without external fields. 
Numerical investigations have shown that the efficiency 
of excitation grows proportional to the distance between 
the waste of laser beam and the interaction point. The 
designed geometry of the recirculation scheme [2] does 
not allow the distance to be more than 20 cm. 

The first problem was to find the optimized parameters 
of the laser beam (wx, wy-wastes) to provide the best and 
most stable efficiency in a wide range of laser powers, 
from 1 10 MW. The optimization yielded wx = 90 μ and 
wy = 1100 μ, with efficiency of excitation from 78-98%. 

Another important problem is the influence of the 
magnetic field strength on the efficiency. Calculations 
have shown that the transverse magnetic field B ≈ 0.005 T 
reduces the efficiency by ≈1%. However, in the LS of 
SNS the magnetic field is created by two stripping dipole 
magnets with opposite polarities. Computation of the 
magnetic field with the ANSYS package has shown a 
good quadrupole field B = C(yêz + zêy) in a large region 
near excitation point of the H0 beam. Calculations of the 

efficiency of LS have shown that the quadrupole field 
with C ≈ 1 T/m reduces the efficiency by ≈1%. 

The tolerances of the H0 beam emittance parameters 
were also investigated and found to be in accordance with 
experimental expectation. 

CONCLUSIONS 
• An adequate physical model for the laser stripping 

including numerous atomic phenomena is developed. 
• A computer model has been implemented as an 

extension module to the PyORBIT parallel code. 
• A preliminary set of calculations for the SNS laser 

stripping have been completed. 
• In the future, for exact calculations of the 3rd step it 

will be necessary to use a more exact numerical 
method for computation of the Stark parameters. 

• In the present time the equations of quantum 
mechanics consider a constant direction of the static 
field in the particle rest frame. In the future 
“centripetal” operator terms for a circulating field 
should be included into the equations. 

• For possible calculations of laser stripping in a 
superposition of a laser field and a strong static field 
it is necessary to include continuum spectra and the 
broadening of Stark levels into the equation of 
quantum mechanical equations. 
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