
AUTOMATED OPERATION OF THE MLS ELECTRON STORAGE RING

Thomas Birke@, Michael Abo-Bakr, Jörg Feikes, Benjamin Franksen, Michael v. Hartrott,
Godehard Wüstefeld – Helmholtz Zentrum Berlin für Materialien und Energie†, Berlin, Germany

Abstract
The Metrology Light Source (MLS) [1] is in user

operation since 2008. This versatile facility has to work at
wide ranges of operating current and energy as well as
different values for the momentum compaction factor
according to user demands that vary even on very short
notice.

In parallel to machine commissioning, a software
system has been developed to control and coordinate the
broad manifold of machine states and meanwhile has
evolved into an indispensable operator tool acting by
itself on demand of a few high level commands.

Actions range from plain device I/O to complex
transactions and multiple device I/O. Design goal of the
software is to keep and transfer machine and control
system within well-defined and consistent states.

MOTIVATION
The Physikalisch-Technische Bundesanstalt (PTB), a

main customer of the BESSY II facility, is the owner of a
low energy electron storage ring, the Metrology Light
Source (MLS), located close to the BESSY II storage ring
in Berlin. The MLS has been designed and built by
HZB/BESSY† according to the specifications of the PTB
and is also operated by HZB/BESSY staff. It offers user
service since April 2008 and is now running in routine
operation.

Table 1: Machine and Operating Parameters of the MLS

Circumference 48 m
Revolution Time 160 ns
Injection Energy 105 MeV
Operational Energy 105-630 MeV
Beam Current 1 pA-200 mA
Values for Momentum
Compaction Factor α

10-4 – 3x10-2

Insertion Device Electromagnetic
Undulator 23x180 mm

Table 1 shows that the MLS has a wide range of

operating modes and parameter settings. Additional
demands on operating the machine emerge from the use
of an electromagnetic undulator. The strong nonlinear
fields enforce compensation with correction coils using
feed-forward systems, otherwise accumulating and
storing beam would not be possible.

A ramping procedure was developed, that keeps the

electron beam stored not only when ramping "up" (to
higher energy) but also when ramping "down" (to lower
energy). This way the energy ramp acts at the same time
as a degaussing cycle. But as it does not drive the storage
ring magnets into full saturation, some remanent fields
cannot be cleared and strongly influence the machine
dynamics. As a consequence any error in setting a magnet
power supply amplitude or polarity can strongly
deteriorate the machine performance and leave the
machine in a different state even after completing the time
consuming special designed degaussing procedure.

Therefore it is crucial to avoid any operating error
when establishing the desired user state in the MLS,
which is best realized with completely predefined and
automatically performed set up procedures.

Another motivation for a high degree of automation
originates from the fact that MLS commissioning work
and operation is a service provided by HZB/BESSY to the
PTB as a customer service. It should be as reliable and
transparent as possible demanding user friendly interfaces
and operation definitions.

Operating the MLS includes injecting beam up to a
desired current, ramping the energy and adjusting the
momentum compaction factor α. All these services
require multiple actions to set up the machine for the
mode requested by the users (PTB).

Since all signals that are required to determine the
necessary steps are available as control system process
variables, the decision was made to develop a software
system performing the essential sequences of actions to
get the machine into the desired states.

SOFTWARE SYSTEM

Finite State Machine
Based on experiences with smaller applications at

BESSY as well as at the MLS, the described software is
developed as a hierarchical set of state machines.

Finite state machines (FSM) are a well proven software
concept to model and control behaviour of complex
systems. A finite state machine – in this case a transducer
that converts input (events) into output (actions) –
consists of a set of all possible states of the modelled
system along with all possible transitions between these
states. The transitions are unambiguously performed on
conditions associated with input events. Any transition as
well as entering a state may initiate output actions. States
describe possible situations of the whole system while
transitions define when (condition) and how (action) to
transform the system into another state.

In a controls application, the input of a finite state
machine usually consists of events resulting from

@ Thomas.Birke@helmholtz-berlin.de
† By the merger with the former Hahn-Meitner-Institut (HMI),
 BESSY became part of the new Helmholtz Zentrum Berlin für
 Materialien und Energie (HZB)

WE1RAC05 Proceedings of PAC09, Vancouver, BC, Canada

1798

Controls and Operations

T04 - Control Systems

incoming changes of process variables from the
underlying control system (EPICS, Experimental Physics
and Industrial Control System), timer-events (esp.
timeouts) and of course actions initiated by the user (e.g.
using the graphical user interface). The output typically is
any sequence of statements/operations limited only by the
software environment, but particularly writing new values
to the control system (modify process variables) and give
feedback to the user.

The very first version of the described program was a
simple beam scrubbing automation, Fig. 1. After the MLS
had been commissioned to a point where beam-
accumulation and ramping to the highest energy was
possible, it was important, to keep the beam-current at
this high energy above a certain limit during nights and
weekends in order to improve beam-conditions.

Figure 1: Simplified sketch of the first version.

This software has since then evolved into an important
helper application. The state machine as it is currently
used was not developed by design according to a full
specification. It has undergone an evolutionary process
influenced by experiences from machine commissioning
as well as from daily use of the application itself. Only by
using the application, it is possible to detect situations not
yet handled by the state machine (often even by operating
errors). The procedures described by the user to solve
these problems are then implemented in the state machine
and undergo a refinement phase based on the experiences
using them. Numerous small development steps have
been made, some of which were later removed in favour
of alternative solutions or have simply proven obsolete
during the commissioning process. A clear view of what
actions are appropriate to setup a certain state often
eventually arises from formally describing the solution in
close cooperation of developer and users/scientists.

During this process, the application became an
indispensable instrument performing all standard actions
the operator has to take care of. It is an attempt to fill the
gap between basic device control and the "one-button-
machine".

By now, the main state machine (the Operation Master)
consists of ~40 states and ~100 transitions. Other state
machines, used to control sub-tasks add another ~20
states and ~40 transitions. These state machines not only
describe the command-sequences necessary to set up a
certain state but also include handling of otherwise
unexpected conditions and implement solutions to
maneuver out of these exception states into the desired or
another safe state.

The whole system was running the MLS without any
human intervention for about two weeks during holiday
break 2008/2009 and performed well, Fig. 2. The only
glitch was a microtron dropout that had to be cared for
manually. This particular intervention is now part of the
action-sequence to recover from microtron errors in the
Operation Master, giving an example of how the system
evolves by practical use.

Figure 2: two-week run during holiday break 2008/2009.

Energy Ramp
Energy Ramp is the application to ramp the energy of

the stored beam. Injection always runs at 105 MeV, and
after injection has finished, the machine has to be ramped
to the desired energy (up to 630 MeV). The driving
parameter is a software parameter that corresponds to the
energy. This parameter is smoothly driven to the desired
end-value and is used as the input-value to an interpolated
breakpoint table for each participating device. The output
of the table is the corresponding set point for this device.
All devices are synchronously driven to the desired
energy minimizing beam-loss.

The breakpoint tables are created with a semi-
automated process. The machine is setup for a certain
energy, all magnets are hand-optimized and when
finished, a special command stores the current settings in
the appropriate breakpoint tables.

Ramping usually is as simple as setting the target
energy and hitting the "Go" button, but due to hysteresis
in the magnets, ramping up and down have to use two
different sets of breakpoint tables to not lose beam during
ramp. These tables are only allowed to switch at the end-
points of the energy ramp, where they map to the same
values. Hence ramping to an arbitrary energy may require
ramping to the endpoint in previous ramp-direction first
before ramping to the desired energy (e.g. 105MeV
450MeV 300MeV won't work, must ramp 105MeV
450MeV 630MeV 300MeV instead).

This constraint is not implemented in the Energy Ramp
itself, but has to be followed by the caller. The Operation
Master takes care of this, and switches tables properly.

The Energy Ramp is one example of a separate
application that also uses a state-machine as the
controlling entity. All interaction with this application is
handled via control system process variables.

Optics Change
Another tool that is currently being developed is an

application to change the optics of the machine by
modifying the momentum compaction factor α. It will be

wait
@630MeV

inject
@105MeV

when current > minLimit

do switch off injection

when current < minLimit

do switch on injection

Proceedings of PAC09, Vancouver, BC, Canada WE1RAC05

Controls and Operations

T04 - Control Systems 1799

very similar to the energy ramp application. The driving
value corresponds to the synchrotron frequency.
Operation Master

Both applications will be managed by the Operation
Master so the operator just defines and sets the main
parameters (current, energy, alpha …) and issues the
initial command to start transition. The Operation Master
takes care of all necessary steps to get from the current
state to the desired parameters which may involve any
subset of injection sequence, energy-ramping and optics-
change. It is the central controlling instance keeping track
of several decentralized non-linear processes.

IMPLEMENTATION
The current implementation is a modular application

written in Tcl/Tk, which is a proper choice for rapid
prototyping and development of an exemplar application
including a graphical user interface. But as the system
settled and stabilized some drawbacks of a monolithic
application became immanent. To avoid conflicts, the
system has to ensure that only one instance is actively
running, and the current status of the Operation Master is
only visible on a single screen. Hence the current setup is
using one dedicated operator-console to run the Operation
Master and display the application main window.

State Machine
The state machine module consists of a set of states

and all transitions between these states as well as all
possible actions to be performed during transition or
when entering a state.

• A state is defined by its name, an optional action to be
performed when the state is entered and a set of
transitions.

• A transition is defined by a condition, an optional
action and a target state. As soon as the condition gets
true, the action is performed and the target state
becomes the next active state.

As an example, a state may be coded as follows:

 state “InjectionRunning” {
 when (current >= maxLimit) {
 } nextState “SwitchInjectionOff”;

 when (microtronState == “ERROR”) {
 ResetErrorsOnMicrotronPLCs()
 } nextState “RecoverMicrotron”;

 when (timeout(injectionTimeout)) {
 msg(“timeout during injection”);
 } nextState “RecoverInjection”;
 }

State Engine
The state engine is the actual processor that runs the

state machine. On external events, it checks for all
possible transitions of the current state and also manages
timeouts. The state engine is just about 10% of the source
code and has not been modified for more than a year now.

Graphical User Interface
The current implementation features its own graphical

user interface. The operator completely controls and
monitors the software using this interface. These 20% of
the source code are closely related to the state machine. It
not only displays information about the current state,
provides acces to all controlling parameters and permits
operator interaction if appropriate, but also displays the
history of actions and messages and logs these to a file for
later analysis.

FUTURE DEVELOPMENT
To overcome the shortcomings, the software has been

redesigned and the application is separated from the
graphical user interface.

Work-in-progress is currently to transform the
Operation Master into a pure headless server process. All
interaction with the Operation Master will happen
through process variables using the control system
infrastructure. The user interface will be a control display
handled by the control system display manager that can
be opened on all displays that have access to control
system data (read/write as well as read-only). Control
system process variables will be the only communication
vehicle to control and monitor behaviour of the Operation
Master.

Additionally, all other EPICS tools can be used to
control and monitor activities. As an example, the alarm-
handler can be used to alert/notify operator and others on
unexpected events and the archiver may be used to log
activity of the Operation Master for diagnostic and
development purpose. This way, the application integrates
very well into the existing control system infrastructure.

Although EPICS provides a powerful tool to implement
finite state machines in an extended C syntax, the
dynamic object-oriented programming language Python
was chosen to implement new version of the Operation
Master.

CONCLUSION
The Operation Master minimizes errors due to

inadvertences and avoids mistakes by taking the load of
precisely following complex command sequences off the
operator. It also implements standard mechanisms to
recover from failure situations as long as no human
interaction is necessary.

Experiences and the convincing success of the system
are very encouraging to use the same system to develop
new core control system components for other currently
running as well as upcoming projects at
BESSY/Helmholtz Zentrum Berlin.

REFERENCES

[1] R. Klein et al., “Operation of the Metrology Light
Source as a primary radiation source standard”, Phys.
Rev. ST Accel. Beams 11, 110701-1 (2008)

WE1RAC05 Proceedings of PAC09, Vancouver, BC, Canada

1800

Controls and Operations

T04 - Control Systems

