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Abstract 
As a first step towards development in digital domain, a 

computer model of a self excited loop (SEL) has been 
created using MATLAB/SIMULINK. The behaviour of a 
resonator and a power amplifier combination has been 
approximated using two first-order differential equations. 
The square of the amplitude of the RF field in the 
resonator acts as a driving force for the motion of 
mechanical modes of the resonator, which are 
individually represented as second order systems. A key 
element is the limiter, which has been modelled as a 
feedback loop, to achieve constant output amplitude. The 
model has been created in the I-Q domain for 
computational efficiency and close correspondence with 
actual implementation. To study the field stabilisation, 
proportional amplitude and phase feedback loops have 
been appended to the model of the SEL. In this paper we 
discuss the details of the model and results from 
simulation. Initial experimental results are also presented. 

INTRODUCTION 
A self excited loop (SEL) serves as a very convenient 

basis for setting up and subsequent amplitude and phase 
locking of the RF fields in a super-conducting 
resonator [1]. Fig. 1 shows the essential elements of an 
SEL. The output of the resonator is fed back to its input 
via a limiter and a phase shifter in cascade. The attenuator 
and the power amplifier are used to set up a specific field 
in the resonator. For amplitude and phase locking, a 
controller is appended to the basic SEL. 

 
Figure 1: Elements of a Self Excited Loop. 

 
RF control systems based on the implementation of an 

SEL in the analog domain have been in use for many 
years [2, 3]. A successful implementation of SEL in 
digital domain has only been recently reported [4]. To 
upgrade the low-level RF control of the Pelletron-Linac 
Facility at TIFR, an SEL based system is being developed 
in the digital domain. As a first step towards this 
development, a computer model of an SEL has been 
created using MATLAB/SIMULINK. For the model 
development and subsequent experimentation, we have 
selected the architecture of the low level signal processing 
blocks, viz.: the limiter, controller, phase shifter, etc, and 

implemented these in the I-Q domain. In the following 
sections we explain the model and present results from 
the simulations along with those from initial experiments. 

MODEL 
For superconducting cavities which have a very high 

quality factor, an approximate differential equation 
describing the resonator field, represented as a complex 
phasor V, can be derived [5] as: 

ext000 VV))-j((1dt
dV =τωω++τ                         (1) 

where, ω0 is the resonant frequency of the cavity and τ0 is 
the intrinsic decay time constant. Vext represents the net 
phasor due to external excitations, viz.: the high power 
RF amplifier coupled to the resonator via a transmission 
line and the beam current. An equivalent circuit for this 
part is shown in Fig. 2. 
 

 βZ0 

Transmission line 
 L Resonator 

Rs Ib

Beam

 Z0, α   IS

  (ω0 , τ0)
Power Amplifier

  (ω, ρs)  
Figure 2: Equivalent Circuit of the RF power system. 

 
Decomposing the various phasors into the in-phase and 
quadrature components the following set of first order 
differential equations model the dynamics of the voltage 
in the resonator: 
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where, (I, Q), (Vfi, Vfq) and (Ibi, Ibq) are the in-phase and 
quadrature components of the voltage on the resonator, 
forward wave and beam current, respectively. τ is the 
loaded decay time constant, Δω = (ω0 - ω) is the detuning 
parameter and β is the coupling constant. 

The RF source is modelled as a generator of a forward 
wave Vf as: 
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where, ρs is the source reflection coefficient. The phasor 
Vo representing the output of the transmission line is 
related to that at the input Vi by the following 
transformation: 
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where, L is length of the line, α is the attenuation constant 
and c is the electromagnetic wave velocity. The model of 
the complete high-power RF system is derived by suitably 
connecting the models of RF power source, transmission 
line and the resonator as described in [6]. 

 
Figure 3: Architecture of the Limiter. 

 
The limiter is a crucial element of the low-level RF 

system and it has been implemented as a feedback loop, 
which keeps the output amplitude constant by multiplying 
a suitable real number to both the I and the Q components 
of the input. Fig. 3 shows the architecture of the limiter 
which has been modelled as a discrete time process and 
computations carried out with finite precision. The only 
essential dynamical element present in the feedback loop 
is a delay, which equals the number of clock time periods 
required to complete the computations. In order to 
improve both the static and the dynamic behaviour due to 
this pure delay process, a suitable compensation is needed 
in the loop. We have used a single pole IIR filter for this 
purpose. 

With the limiter implemented as described above, we 
have two interacting closed loops in a free running SEL. 
The behaviour of the loop in the limiter is like that of a 
high pass filter, while the outer SEL loop behaves like a 
low pass filter. For a good transient response of this 
composite system around the equilibrium point, the gain 
due to the outer loop should start decreasing at 
frequencies sufficiently below that at which the gain of 
the loop in the limiter starts to increase. 

The availability of modern programmable digital 
hardware having both high precision and high speed, the 
condition mentioned above can be easily met even for 
moderately high-Q cavities. 

 
Figure 4: The Controller. 

 
The controller architecture is shown in fig. 4. The phase 

and the amplitude locks are achieved by appropriate 
modulation of the drive to the resonator. The I-Q 
components of the resonator field are phase shifted by the 

reference phase angle. Thus, comparing the resultant 
quadrature component to zero represents the phase error. 
The amplitude error is generated by comparing the square 
of the field amplitude with a suitable set-point. A bias can 
also be introduced to set the quiescent operating point. 

The phase shifters in the I-Q domain are represented by 
a rotation transformation, corresponding to a phase angle 
φ. Thus, the output Vo is related to that at the input Vi as: 

φ= j
io eVV                                                                    (6) 

It can be shown that the dynamics of the shift in 
resonant frequency of the resonator, due to the various 
mechanical modes excited by the radiation pressure in the 
cavity, can be represented by a second order differential 
equation [1, 5, 7] as: 
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where, Ωμ and τμ are the fundamental frequency and 
decay time constant, respectively, of a particular 
mechanical mode. The square of the resonator field 
amplitude (VV* = I2 + Q2) drives the mechanical mode 
and ωμ is the corresponding shift in resonant frequency. 

In general, the total change in the resonant frequency 
due to electromechanical coupling is obtained by 
summing the individual contributions of all excited 
modes. The electrical and mechanical systems are 
connected to each other by the following relation: 

ext000 ω+ω+ω=ω ∑ μ                                           (8) 

where, ω00 is the centre frequency of the resonator at zero 
field and ωext is the resonant frequency change due to 
external mechanical perturbations. 

Model of the Complete SEL and Test Results 
The model of the SEL is completed by concatenating 

the models of individual sub-systems and by 
incorporating suitable gain, attenuation, delay of the 
processing and interconnects, as well as the saturation 
effect in the power amplifier. MATLAB/SIMULINK has 
proved a very convenient tool for modelling the SEL, a 
part of which is analog and the other part a finite 
precision, discrete time system. 

Various operating scenarios can be easily created using 
this model. Fig. 5 shows the result obtained for one such 
example. The system is turned on at time t = 0 by 
injection of a pulse in the in-phase component to the 
resonator. The initial detuning of one loaded band-width 
reduces with time due to electromechanically induced 
resonant frequency change. Phase feedback is introduced 
at 6 ms and the system attains phase lock at -90° phase 
angle. During the initial period following the closure of 
phase feedback, the drive is not sufficient to keep the 
amplitude constant. This leads to a dip in the resonator 
field value, which in turn excites the mechanical mode in 
the resonator. Amplitude feedback is turned on at 8 ms 
and as the drive power is sufficient to handle the 
frequency excursions, both the locks are retained. It 
should be noted that the output amplitude of the limiter 
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remains relatively unaffected by the transients mentioned 
above. 

Figure 5: A sample run. 
 

The parameters used for the above simulation are: 
resonator: τ = 0.001s, initial Δω = 1000rad/s, β = 1, 
τμ = 0.01s, Ωμ = 2π(1000)rad/s, Kμ = 1000 per (volts)2, 
compensator (filter) in the limiter loop f(z) = 0.04/(1–
0.999/z); the computational delay in the feedback loop of 
limiter is 4 samples with a sampling time of 25ns, 
amplitude feedback gain = 20, phase feedback gain = 20, 
loop phase shift = 0, reference phase shift = 90°, and 
amplitude reference = 1. 

 Initial Experiments 

 
Figure 6: Experimental Set-up. 

 
We have realised a free running SEL using Altera 

Cyclone III FPGA development kit. Fig. 6 shows the 
scheme which is being tested at low power levels with a 
normal-conducting resonator having a decay time of 
about 12μs. Fig. 7 shows an oscilloscope trace of the 
resonator pick-up after the application of a trigger signal, 
which resets the system. The oscillations in the loop are 
initiated by the intrinsic noise of the set-up. 

In near future, we plan to build a complete system by 
appending up/down converters and a proper clocking 
system. For the final system, the resonator pickup will be 
down-converted to 20MHz. This choice is based on a 
compromise between low-latency and accurate field 
detection. The complete signal processing has been 
successfully simulated and synthesised for an FPGA with 

ADC samples at 80MHz (four samples per cycle), leading 
to I-Q data streams at 40MHz and thus a processing 
period of 25ns. 

 
Figure 7: Self Excited Oscillations, 10μs per div. 

 CONCLUSION 
The behaviour of the model for resonator control has 

been successfully demonstrated. The results from initial 
experiments using a development kit (processing period 
of 40ns) are encouraging. The SEL based RF control in 
digital domain will be tested on the super-conducting 
resonators at TIFR. 
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