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Abstract 

In the TRIUMF cyclotron when a spark occurs it is 
necessary to shut off the RF drive and to initiate an RF 
restart procedure.  It is also desirable to restore the full 
operational dee voltage as soon as possible in order to 
prevent thermal detuning of the resonant cavity.  
However, when the RF drive is shut off, the 
disappearance of Lorentz force on the resonator hot-arms 
causes the hot-arms to vibrate at their mechanical 
resonant frequency.  When the RF field is being restored, 
the electromagnetic resonance is coupled to the 
mechanical resonance through the Lorentz force, and the 
amplitudes of the both the mechanical vibration and the 
RF field depend on when RF drive is re-applied.  
Computer simulations and experimental results will be 
presented to demonstrate that an optimum exists for the 
RF restart timing.  With this optimal timing, the Lorentz 
force is used to suppress the mechanical vibration of the 
hot-arms.  The reduction in hot-arm vibrations increases 
the probability of successful restarts as well as reduces the 
stress on the RF components. 

INTRODUCTION 
When sparking occurs inside the TRIUMF cyclotron 

resonator, the RF power is cut off in order to extinguish 
the spark[1].  If it takes more than a few seconds before 
voltage comes back to its nominal value, then the 
cyclotron thermal balance is lost.  This is due to the 
substantial amount of heat removed from the structure by 
efficient cooling which is not being replenished by the RF 
power. Temperature variations affect the cyclotron 
resonant frequency. In the operational mode, automatic 
control of the resonant frequency is performed by varying 
the cooling water pressure which gives a limited tuning 
range of about 3 kHz. Thermal imbalance due to recovery 
time causes a resonant frequency shift of about 10 kHz. It 
requires about 3 minutes for the system to come back to 
the operational frequency, when it can be switched to 
generator driven mode. Beam injection restart requires 
some 10-20 seconds more. Recovering from a spark can 
cause 4-5 minutes of total machine downtime. In order to 
prevent this lengthy downtime, the restart procedure is 
initiated as soon as possible.  Spark detection is based on 
cyclotron voltage drop analysis. When the voltage drop 
differential exceeds 10 kV/μs, the event is recognized as a 
spark. At this point the RF drive turns off for 60 ms to let 
the spark products diffuse away from the arc channel. 
Then the RF drive instantly comes back to generator 
driven mode. In the past, we have observed that more 
than half of these fast recovery attempts were 
unsuccessful. Also, in every attempt, measurements have 

shown that there were large fluctuations in field voltage 
and reflected power during the restart attempts. 

THEORY 
Suppose a resonator is operating in a steady state 

condition with field voltage V0.  This produces a Lorentz 
force and causes the resonant cavity to be detuned by 
Δω0.  At time interval 0 < t < tR, the field voltage is 
removed and the cavity will start a mechanical oscillation 
with frequency Ωμ and damping time constant τμ.  
Neglecting Coulomb friction, the mechanical equation for 
this detuning is 
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The initial conditions are 
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and 
0=V  for Rtt <<0     (1c) 

For Rtt ≥ , a constant RF drive is re-applied. Since the 
detuning is changing due to mechanical vibration, the 
field voltage is given by the approximation 
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With Δω << ω, ωBW is the electrical bandwidth of the 
resonator, and α is the recovery reduction factor. The 
field voltage in turn generates a Lorentz force which 
modifies the mechanical vibration through the 
inhomogeneous term in Eq. 1a.  Despite its appearance, 
Eq. 1’s are nonlinear due to the nonlinear nature of Eq. 2. 

Defining the dimensionless quantity 

ε ≡ Δω
kμVo

2
 and v ≡ V

Vo

 ,    (3) 

where ε is the mechanical detuning normalized by the 
initial Lorentz force detuning, and v is the ratio of the 
cavity voltage to the initial voltage. The normalized 
equation of motion is 
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When εBW >> 1, i.e. the detuning is small compared to the 
bandwidth, Eq. 4c becomes independent of ε and 
Equation 4a becomes a second order ordinary differential 
equation and can be solved analytically. 
For  0 < t < tR,  

( ) tet
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cos     (5) 
The phase trajectory is a stable spiral focused at (0, 0). 
For Rtt ≥ , 
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with A and φ dependent on tR. The phase trajectory is a 
stable spiral focused at (-α2, 0).  The results for different 
tR’s are plotted in Figure 1. 

Figure 1:  Dependency of mechanical oscillation on 
recovery timing 

The phase portrait for a system with damping, different 
tR’s and α = 1 is shown in Figure 2.  At t < 0, the system 
is at rest at (-1, 0) in the normalized phase plane.    For 0 
< t < tR, with no Lorentz force present, the trajectory 
follows a stable spiral depicted in a gray line focused at 
(0, 0).  When the RF field re-establishes for t > tR, the 
focus moves back to (-1, 0).  By observation it follows 
that in order to obtain the smallest spiral focused at (-1, 
0), the switching should occur at when the phase 
trajectory is at the negative real axis at the end of the first 
oscillation cycle.  We will call this time as t2π,.  
Furthermore, due to mechanical damping, the amplitude 
of vibration decreases exponentially, and does not reach (-

1, 0) but instead at ( 0,
2

μμτ
π
Ω

−

− e ).  To stop the vibration 
using Lorentz force, we can synchronize α with damping 

such that α = e
− π

τ μ Ωμ .  After the mechanical vibration is 
stopped, we can ramp the voltage back to its original 
amplitude as shown in Figure 3.  For resonators with 
Coulomb friction, the foci’s are shifted to the left for 
trajectories on the upper half phase plane and shifted to 
the right for trajectories on the lower half phase plane.  
This has the effect of decreasing the radii of the 
trajectories but does not affect the optimal recovery time. 

Figure 2:  Phase portrait of recovery timing 

 

Figure 3:  Phase Trajectories for optimal recovery 
timing for damped oscillation 

RESULTS 
The mechanical resonances of the TRIUMF cyclotron 

Dee’s consist of a sharp resonance peak at 5 Hz due to the 
fundamental mode of the strongback of the individual 
segment in the Dee[2,3].  Fig. 4 shows the recovery that 
occurred at 60 ms after a spark.  The top yellow trace  

Figure 4:  60 ms delay spark recovery 

indicates the RF drive amplitude; the second green trace 
measures the Dee voltage amplitude.  The third pink trace 
is the tuner drive signal, which gives a good indication of 
the Dee tip position.  The last cyan trace is the measured 
reflected power.  As can been seen in the third (pink) 
curve, the resonator is almost at the peak of its deflection 
at the time when the RF is reapplied.   As a result of this 
there are large fluctuations in RF forward and reflected 
power which lasted for several seconds until the 
oscillation decayed. 
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In contrast Figure 5 shows the same RF parameters when 
the recovery is timed at t2π  of 200 ms after the initial 
spark.  At this time the RF is switched back on, and the 
equilibrium position coincides with the instantaneous 
position of the resonator.  As a result very little residual 
resonator movement is observed. 

NARROW BANDWIDTH CAVITIES 
When the Lorentz detuning becomes comparable to the 

resonator bandwidth, i.e., Δω ≅ ωBW, the phase trajectories 
are no longer simple spirals but take on shapes like dumb-
bells.  The critical points are located where 
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We will restrict the analysis to the case where α = 1 
because the strong dependency of Δω on α makes it 
impractical to be otherwise. The roots of this cubic 
equation then have rather simple forms 
-1, ( )211

2
1

BWε−±−     (9) 

When εBW > 1, there is only one critical point at (-1, 0).   
The result is similar to the previous cases where Δω << 
ωBW.  For εBW < 1, there are three critical points: (-1, 0) 
and ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−− 0,11

2
1 2

BWε which are either centres (no 

damping) or stable foci (with damping).  In between of 
the above two points is a saddle point at 
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BWε .  Since the success of the 

recovery process means that the trajectory converges to (-
1, 0), the separation of (-1, 0) and the saddle point 
becomes very important. Due to the appearance of the 
extra focus and saddle point for narrow-band devices, the 
success of a recovery depends on the timing of the restart 
and is no longer arbitrary. A phase portrait of εBW = 0.9 
with damping is shown in Figure 6.  The trajectories have  

Figure 6:  Phase portrait for high distortion cavity 

2 boundaries separating a region indicated by its green 
colour.  The trajectories are bifurcated into 2 families, 
with the green region representing the family of 
trajectories that converge to the singular point (-1, 0), 
where the RF field can be restored successfully.  The 
other converges to (-0.28, 0) where the RF field is at a 
much lower value, due to the fact that at εBW < 1 there 
exist a strong dependency of amplitude on detuning.  The 
success of the recovery depends on the mechanical 
damping of the resonator as well as the location of the 
saddle point. For resonators with little mechanical 
damping, the free oscillation trajectory passes on the left-
hand side of the saddle point, making t2π  the optimum 
recovery time.  If the trajectory passes the saddle point on 
the right-hand side due to higher damping, then the 
successful recovery time is less than t2π. With decreasing 
εBW, as the saddle point moves toward the focus at (-1, 0), 
the separation between the 2 regions becomes smaller, 
making successful recovery more difficult. 

CONCLUSION 
As shown by the computer simulation described, the 

recovery is quite sensitive to the timing when the RF field 
is re-established.  Re-applying the RF drive as soon as 
possible does not lead to a faster recovery to a stable 
operating point.  For a wide bandwidth cavity, the optimal 
time is when the mechanical oscillation has completed 
one oscillation.  For a narrow bandwidth cavity, this 
timing may be required to be earlier, depending on the 
mechanic damping of the resonator. 
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Figure 5:  200 ms delay recover 
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