# MUON CAPTURE, PHASE ROTATION, AND PRECOOLING IN PRESSURIZED RF CAVITIES* 

D. Neuffer, \# Fermilab, Batavia, IL 60510, USA, C. Ankenbrandt, R. Johnson, C. Yoshikawa, Muons, Inc., Batavia, IL 60510, USA


#### Abstract

Gas-filled RF cavities can provide high-gradient accelerating fields for muons, and can be used for simultaneous acceleration and cooling of muons. In this paper we explore using these cavities in the front-end of the capture and cooling systems for neutrino factories and muon colliders. We consider using gas-filled RF cavities for the initial front end cooling systems. We also consider using them for simultaneous phase-energy rotation and cooling in a front-end system. We also consider using lower-density RF cavities, where the gas density is primarily for RF breakdown suppression, with less cooling effect. Pressurized RF cavities enable higher gradient RF within magnetic fields than is possible with evacuated cavities, enabling more options in the frontend. The status of designs of the capture, phase rotation, and precooling systems of muon beams in pressurized cavities is described.


## INTRODUCTION

Bright Muon beams are required for muon colliders, neutrino factories and intense muon sources. For a neutrino factory (or muon collider), short, intense bunches of protons are focused onto a target to produce pions, which decay into muons, that are collected and cooled, then accelerated into a high-energy storage ring, where their decays provide beams of high-energy neutrinos.[1, 2,3] The challenge is to collect and accelerate as many muons as possible.

In the neutrino factory design study $2 \mathrm{~A},[1]$ the $\pi$ 's drift from the production target, lengthening into a long bunch with a high-energy "head" and a low-energy "tail", while decaying into $\mu$ 's. Then the beam is bunched into a string of bunches in a "Buncher", followed by " $\phi-\mathrm{E}$ rotator" section that aligns the $\mu$ bunches to (nearly) equal central energies (matched into 200 MHz spacing), and then cooled in a $\sim 200 \mathrm{MHz}$ cooling channel with LiH absorbers.[4] (see fig. 1)

The buncher requires $\sim 300 \mathrm{MHz}$ rf cavities at $\sim 5 \mathrm{MV} / \mathrm{m}$, while the rotator requires $\sim 220 \mathrm{MHz}$ rf at $\sim 10 \mathrm{MV} / \mathrm{m}$, both within $\mathrm{a} \sim 2 \mathrm{~T}$ solenoid. The cooler requires $\sim 15 \mathrm{MV} / \mathrm{m} 200 \mathrm{MHz}$ rf within alternatingsolenoid focussing. It is not certain that rf can be operated reliably at these parameters within vacuum cavities. Experiments have shown that high-pressure $\mathrm{H}_{2}$-gas filled rf cavities can operate at up to $50 \mathrm{MV} / \mathrm{m}$, with no gradient loss in high magnetic fields.[5, 6] In this note we exploit

[^0]this apparent capability in designing variations on this front end concept. The energy loss of muons in $\mathrm{H}_{2}$-gas also provides an ionization cooling effect that can be beneficial in front end design.


Figure 1: Layout of the Study 2A neutrino factory front end, showing an initial drift from the $\pi$ production target, a buncher with low-gradient rf. a " $\phi$-E rotator" section with higher gradient rf, and a cooler transport with rf and LiH absorbers.


Figure 2: A cell of the gas-filled cooling system. (radial cross-section view) This contains 0.5 m long "pillbox" 201.25 MHz rf cavities, with 0.25 m gaps between cavities containing coils for magnetic fields. The $\mathrm{H}_{2}$ gas fills the center of the transport with a uniform density.

## GAS-FILLED COOLER LATTICE

As a first application we consider replacing the LiH absorbers with $\mathrm{H}_{2}$ gas. In a simplest configuration the gas fills the entire transport of the cooling section (rf cavities and drift spaces between cavities (see fig. 2)). The gas density is chosen to provide the same energy loss per 0.75 m half-cell as 2 cm LiH . This corresponds to $\sim 125 \mathrm{Atm}$ equivalent density. The rf gradient is $15 \mathrm{MV} / \mathrm{m}$ in the rf cavities. The equilibrium emittance with $\mathrm{H}_{2}$ is $\sim 60 \%$ of that with LiH , so we do expect some what improved cooling. Simulations with both ICOOL and G4 beamline showed significant improvement.[7, 8]

Fig. 3 shows results of the simulation of a $v$ Factory Front End in G4Beamline. In that example the front end consisted of a Hg target within a $20 \mathrm{~T} \rightarrow 2 \mathrm{~T}$ solenoid, an initial Drift of 57 m . a 31 m Buncher and a 36 m long Rotator leading into a 90 m long cooler. The cooler

## Lepton Accelerators

consisted of alternating solenoid cells with either $\mathrm{H}_{2}$ gas absorber throughout, as displayed in fig. 2, or vacuum filled with LiH slabs, as used in Study 2A. Fig. 3 shows the number of muons within the $v$-Factory acceptance along the Cooler with either LiH absorbers or 2 different densities of $\mathrm{H}_{2}$-gas-filled cooling. As the beam is cooled, more $\mu$ 's are within the $v$-factory acceptance. After $\sim 80 \mathrm{~m}$ of LiH cooling, $\sim 0.06 \mu / \mathrm{p}(8 \mathrm{GeV})$ are accepted, while with $\mathrm{H}_{2}$ cooling $\sim 0.08 \mu / \mathrm{p}$ is obtained, with no sensitivity to small density changes.


Figure 3. A comparison of muon capture with gas $\mathrm{H}_{2}$ cooling or LiH cooling, as simulated using G4Beamline. The gas $\mathrm{H}_{2}$ example obtains $33 \%$ more $\mu / \mathrm{p}$ than the case with LiH cooling. $\mathrm{H}_{2}$ density is $0.0104 \mathrm{gm} / \mathrm{cm}^{3}$.

## GAS-FILLED ROTATOR AND COOLER

As a further configuration, we propose using highpressure gas-filled rf cavities[5] in the $\phi$-E rotator section to combine phase-energy rotation and cooling into a single, more compact system. (see Fig. 1) The gas can suppress breakdown, enabling higher gradient, and the gas provides energy-loss cooling.

We began with the ICOOL[7] version of the neutrino factory front end, from which the Study 2A version was developed, which is displayed in fig. 1.[1] This version has a target within a 20 T solenoid that tapers down to 2 T and a drift region that is 111 m long, going into a "highfrequency adiabatic buncher" that is $\sim 51 \mathrm{~m}$ long. The adiabatic buncher was followed by a 54 m long "phaseenergy rotation region", followed by a cooling channel of $\sim 80 \mathrm{~m}$ length. The focusing magnetic field is constant at 2 T until into the alternating solenoid field of the cooling channel. This design obtains $\sim 0.23 \mu / 24 \mathrm{GeV}$ p within the reference acceptances (amplitudes $\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.03$ ) after $\sim 80 \mathrm{~m}$ of cooling, while the transverse rms emittance (normalized) is reduced from $\sim 0.018$ to $\sim 0.008 \mathrm{~m}$.
In the present variant, we use gas-filled high-gradient rf in the $\phi$ - E rotator, The baseline energy loss in gaseous hydrogen is $\mathrm{dE} / \mathrm{dx}=0.000344 \mathrm{P} \mathrm{MeV} / \mathrm{cm}$, where P is the pressure in atmospheres (at $295^{\circ} \mathrm{K}$ ).[11] We (initially) use a pressure of 150 Atm averaged in this section, so $\mathrm{dE} / \mathrm{dx}=0.052 \mathrm{MeV} / \mathrm{cm}$, or 3.9 MeV per 0.75 m cell (cavity + drift). The total energy loss over 72 cells is 281 MeV , equivalent to $\sim 70 \mathrm{~m}$ of the Study2A cooling Lepton Accelerators
channel. The 2 T solenoid focusing is replaced by a 2.8 T alternating solenoid field, with matching at the end of the buncher.

At the end of the $\phi$-E rotation and cooling channel, we find $\sim 0.22 \mu / \mathrm{p}(24 \mathrm{GeV})$ within the Study 2 A acceptances ( $\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.03$ ), with $\sim 0.12$ within the smaller acceptance $\left(\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.015\right.$ ). (see fig. 4) The transverse rms emittance was cooled from $\sim 0.019 \mathrm{~m}$ at the end of the buncher + transverse match to $\sim 0.008 \mathrm{~m}$ at the end of the $\phi-E$ rotator. This performance is approximately the same as the baseline Study 2A case. The $\mu$ acceptance can be improved by increasing the longitudinal acceptance. If the longitudinal emittance aperture were increased to 0.3 m , then $\mu / \mathrm{p}$ at $\varepsilon_{\perp}<0.03 \mathrm{~m}$ increases to 0.26 , with 0.14 at $\varepsilon_{\perp}<0.015 \mathrm{~m}$.

## Lower gradient variant

The $24 \mathrm{MV} / \mathrm{m}$ rf may be relatively expensive, and we consider a case with reduced rf requirements. The rf gradient was reduced to $20 \mathrm{MV} / \mathrm{m}$, while the gas density was reduced to 133 atm . At these parameters, at the end of the $\phi$-E rotation and cooling channel, we find $\sim 0.20 \mu / \mathrm{p}$ $\left(\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.03\right)$, and with $\sim 0.10$ within the more restricted acceptances $\left(\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.015\right)$. The transverse rms emittance is cooled from $\sim 0.019 \mathrm{~m}$ at the end of the buncher to $\sim 0.0093 \mathrm{~m}$ at the end of the $\phi-\mathrm{E}$ rotator/cooler. The performance was $\sim 10$ to $15 \%$ worse than the higher gradient example. The reduced performance is largely due to the reduced cooling. Adding $\sim 30 \mathrm{~m}$ of additional cooling cells at the study 2 A parameters increases the acceptance to $\sim 0.23 \mu / \mathrm{p}(0.126$ at $\varepsilon_{\perp}<0.015$ ) while cooling transverse emittances to $\sim 0.0079 \mathrm{~m}$.


Figure 4: Capture of muons within the reference acceptances in the $24 \mathrm{MV} / \mathrm{m}, 150 \mathrm{~atm} \mathrm{H}_{2}$ case. The horizontal axis is distance along the transport in m . (The $\phi-E$ rotator cooler begins at $z=163$ and ends at $\mathrm{z}=217 \mathrm{~m}$.) The upper trace is total $\mu / \mathrm{p}$; the lower traces are $\mu / \mathrm{p}$ in the acceptance of $\varepsilon_{\mathrm{L}}<0.15 \mathrm{~m}, \varepsilon_{\perp}<0.03 \mathrm{~m}$ and $\varepsilon_{\perp}<0.015 \mathrm{~m}$.

We also considered using Be or LiH slabs as the energy absorbers. These slabs were located at the ends of the cavities, where they can close the cavity, enabling a pillbox cavity geometry. However the overall performance in ICOOL simulation was somewhat less
successful. The number of muons within the $\left(\varepsilon_{\mathrm{L}}<0.15 \mathrm{~m}\right.$, $\varepsilon_{\perp}<0.03 \mathrm{~m}$ ) apertures is $\sim 0.134 \mu / \mathrm{p}$ for Be and 0.15 for LiH . The degradation in performance is somewhat more than that expected simply from the increased multiple scattering.

## LOW-DENSITY GAS-FILLED $\phi$-E ROTATOR

In this variant the rotator is filled with a low density of $\mathrm{H}_{2}$ gas. The role of the gas here is simply to prevent breakdown, and experiments indicate that only $\sim 15-\mathrm{atm}$ equivalent density is needed to prevent rf breakdown; this is $\sim 10 \%$ of that used in the combined buncher-cooler discussed above or in the gas-filled cooling channel. The gas itself would therefore provide only a small amount of energy loss and the basic beam dynamics would only be a small perturbation on the baseline described above. To confirm this discussion we simulated the front end under those assumptions.

In an initial example we chose a front end based on fig. 1, but with an initial buncher limited to $6 \mathrm{MV} / \mathrm{m}$ gradient, and a rotator with gas-filled cavities at 15 atm density (within the alternating solenoid lattice shown in fig. 2), and a cooler with LiH absorbers. (The limited buncher gradient and alternating solenoid lattice were chosen as variants that may be more likely to avoid breakdown.). The ICOOL simulation showed reasonably good acceptance, essentially the same as similar simulations without gas-filled rf. $\sim 0.2 \mu / \mathrm{p}(24 \mathrm{GeV})$ are obtained after $\sim 75 \mathrm{~m}$ of LiH cooling within $\left(\varepsilon_{\mathrm{L}}<0.15, \varepsilon_{\perp}<0.03\right)$. The beam is cooled from $\sim 0.018 \mathrm{~m}$ to 0.016 within the $\mathrm{H}_{2}$ and then from 0.016 to 0.0075 m with the LiH absorbers.
In another variation, the rotator was placed in a constant $\mathrm{B}=2 \mathrm{~T}$ field, with (or without) $15 \mathrm{~atm} \mathrm{H}_{2}$ density, and with a $125 \mathrm{~atm} \mathrm{H}_{2}$ cooling section. These examples placed the configuration in an idealized study2A baseline, and the performance was significantly better. This example obtains $\sim 0.31 \mu / \mathrm{p}(24 \mathrm{GeV})$ without gas in the rotator and $\sim 0.29 \mu / \mathrm{p}(24 \mathrm{GeV})$ with gas in the rotator to suppress breakdown. The results also indicate the level of improved performance possible with gas-filled rf throughout. (With LiH cooling rather than $\mathrm{H}_{2}$ cooling, $\sim 0.26 \mu / \mathrm{p}(24 \mathrm{GeV})$ are obtained.)

## CONCLUSIONS AND DISCUSSION

These initial examples demonstrate that $\mathrm{H}_{2}$ gas-filled rf cavities can be inserted into the phase-energy rotation
section and cooling sections and obtain muon capture and cooling as good or better than that in the optimized Study 2A scenario. The present examples establish that a highperformance $v$-factory front end can be developed using the gas-filled cavities for simultaneous high-gradient rf and energy-loss cooling. Variations on the technique can also be explored in preparing muon beams for a $\mu^{+}-\mu^{-}$ collider.


Figure 5. Transverse beam sizes in the front end after equivalent energy-loss LiH cooling(left) and after gaseous $\mathrm{H}_{2}$ cooling(right). (Horizontal and vertical axes are $\pm 0.4 \mathrm{~m}$ )

## REFERENCES

[1] "Cost-effective Design for a Neutrino Factory", with J. S. Berg, S. A. Bogasz, S. Caspi, J. Cobb, R. C. Fernow, J. C. Gallardo, S. Kahn, H. Kirk, R. Palmer, K. Paul, H. Witte, M. Zisman, Phys. Rev. StAB 9,011001(2006)
[2] N. Holtkamp and D. Finley, eds., A Feasibility Study of a Neutrino Source based on a Muon Storage Ring, Fermilab-Pub-00/108-E (2000).
[3] S. Ozaki, R. Palmer, M. S. Zisman, eds., BNL-52623, June 2001 http://www.cap.bnl.gov/mumu/studyII/FS2-report.html.
[4] D. Neuffer, "'High Frequency' Buncher and Phase Rotation", Proc. NuFACT03, AIP Conf. Proc. 721, p. 407. (2004).
[5] R. Johnson et al., "Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders", invited paper, Proc. PAC2005, Knoxville, TN (2005).
[6] R. E. Hartline et al., Fermilab MUCOOL-Note-285, 2005.
[7] R. Fernow, "ICOOL Simulation Program" Proc. 1999 PAC, New York, p. 3020 (1999), http://pubweb.bnl.gov/people/fernow/ICOOL
[8] T. Roberts, G4beamline, http://g4beamline.muonsinc.com


[^0]:    *Work supported by US DOE under contract DE-AC02-07CH11359 and SBIR grant DE-FG02-05ER86252 and FRA DOE contract number
    DE-AC02-07CH11359
    \#neuffer@fnal.gov

