
SIMULATION OF THE LHC COLLIMATION SYSTEM USING MERLIN

A. Toader∗, R. Appleby, R. Barlow, H. Owen, S. AlShammari
University of Manchester & The Cockcroft Institute, United Kingdom

Abstract

The LHC Collimators are designed to remove halo par-
ticles such that they do not impinge onto either detectors or
other vulnerable regions of the storage ring. However, the
very high 7 TeV energy means that their design is critical,
as is the modelling of the absorption, scattering and wake-
field effects upon the passing bunches. Existing simula-
tions are performed using Sixtrack and K2. We report pre-
liminary results using the MERLIN code, which allows a
fuller description of the scattering and wakefield processes,
and in principle other physics processes.

INTRODUCTION

The Large Hadron Collider (LHC) requires a total num-
ber of 3 × 1014 protons in 2835 bunches for its target lu-
minosity of 1034 cm−2s−1 [1], and also has an operating
mode in which two counter-rotating lead ion beams are
stored. All four major experiments (ATLAS, CMS, LHCb,
ALICE) and the storage ring itself must be protected from
the potentially-damaging intense beam halo fed from the
stored beam over many hours of stored beam, in the storage
ring particularly the superconducting dipole cold masses,
but also the warm vessels and detectors. Because of the
large stored beam energy (360 MJ for 7 TeV protons), and
the low quench limit of the superconducting magnets of
only 8.5 W/m, dedicated cleaning insertions are required to
limit the loss from the outer halo to less than 10−3, imply-
ing a very good local cleaning efficiency. Primary (TCP)
and secondary (TCS) collimators are composed of rein-
forced carbon to progressively spoil the incident halo prior
to absorption on tungsten tertiary (TCT) absorbers, as well
as auxiliary elements for protection at particular locations.
The overall LHC layout is shown schematically in Figure 1,
and the collimation system is described elsewhere [2, 3].

COLLIMATION MODELLING

At present, the primary modelling of the collimation
system involves tracking of halo rings of charge with ini-
tial impact parameter around 1μ m to just impact the pri-
mary collimators, the halo being repopulated from the core
beam [5]. SixTrack [7] is used with K2 [8, 6] to model
the collimator scattering including elastic/inelastic scatter-
ing and single diffractive nuclear scattering [5], but not in-
cluding the wakefield effects of the collimators. In this pa-
per, we instead use MERLIN [9, 10] as a framework for
simulations: MERLIN is a C++ package that may be ex-
tended to include additional physical processes. Here we
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Figure 1: LHC schematic showing arrangement of experi-
ments and collimation system.
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Figure 2: Test of MERLIN code, showing action of primary
collimators on a thin ring of particles with distribution in
vertical phase space at 8σ from the beam centre, with all
collimators set to be perfectly absorbing.

present preliminary simulations where we have included
normal (single plane) and angled collimators, which give
rise to either elastic scattering or complete absorption.

As a test of the LHC optics (V6.503 in collision) we first
confirm that collimation takes place for an overly large halo
of 8σ with collimators set to their nominal values [11] (Fig-
ure 2). The primary collimator TCP.D6L7.B1 is the first to
be struck, and this is confirmed to be at approximately cor-
rect aperture in Figure 3. By adjusting the halo size, we
can set the impact parameter to approximately 1μm simi-
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Figure 3: Observation of collimation at primary collimator
TCP.D6L7.B1 (set to be perfectly absorbing) for vertical
phase space distributions of rings at 8σ (above) and 5.8σ
(below).

lar to the procedure used in SixTrack [5]; this is shown in
Figure 4, and varies with turn number as shown in Figure 5.
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Figure 4: Variation of impact parameter TCP.D6L7.B1
with size of halo distribution in vertical phase space.

COMPARISON OF PARTICLE LOSS
LOCATIONS

To adequately model particle loss in the LHC, particles
must be followed for a few hundred turns to allow the pri-
mary and secondary spoilers to act to blow up the halo. In
Figure 6 we show the particle loss on TCP.D6L7.B1 (the
principal primary collimator in this simulation) as a func-
tion of turn number for perfectly-absorbing collimators, for
an initial halo population of 100,000 particles where 80,770
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Figure 5: Average impact parameter at TCP.D6L7.B1 as a
function of turn number for vertical phase space distribu-
tion of 5.875σ, into perfectly-absorbing collimator, show-
ing that charge ring is approximately the correct size for
collimator simulation.

are absorbed over 200 turns. Clearly, with elastically-
scattering primary and secondary collimators the loss is
transferred onto the absorbing tertiaries. To compare with
SixTrack, we compare the impacts on the primaries and
secondaries between the two codes: this is shown in Fig-
ure 7. Reasonable agreement is obtained given the differ-
ences in the codes and physics; similar collimation ineffi-
ciencies [4, 5] are found in the primary collimators. Losses
in the tertiaries cannot be compared without the addition of
inelastic scattering to the primary collimators.
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Figure 6: Particle loss into TCP.D6L7.B1 as a function of
turn number, with all collimators set to be perfectly absorb-
ing. The vertical tune is visible via the Fourier transform
of the loss.
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Figure 7: Collimator impact locations for initial distribution in both planes with impact parameter 1μm, comparing MER-
LIN (with perfectly-absorbing collimators, in red), and SixTrack (with elastic/inelastic and nucleon scattering included,
in blue) [12]. Approximate agreement is obtained considering the different physics: primary collimators are impacted

FURTHER WORK

We have shown that MERLIN may be used to replicate
the essential features of collimation modelling in the LHC.
It is planned to augment this preliminary work with suffi-
cient physics to correctly model the spoiler/absorber pro-
cess, and to add wakefield effects to this.
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