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Abstract

The grazing function g is introduced – a synchrobetatron
optical quantity that parametrizes the rate of change of total
angle with respect to synchrotron amplitude for particles
grazing a collimator or aperture. The grazing function is
particularly important for crystal collimators, which have
limited acceptance angles. The implications for RHIC,
SPS, Tevatron and LHC crystal implementations are dis-
cussed. An analytic approximation is derived for the max-
imum value of g in a matched FODO cell, and is shown to
be in good agreement with a realistic numerical example.
The grazing function scales linearly with FODO cell bend
angle, but to is independent of FODO cell length.

INTRODUCTION

The total horizontal displacement xT of a particle as it
passes a collimator is the sum of its betatron (xT ) and syn-
chrotron (xs) displacements, where the betatron displace-
ment and angle oscillate according to

xβ = ax sin(φx) (1)

x′
β =

ax

β
(cos(φx) − α sin(φx)) (2)

Here β and α are horizontal Twiss functions at the colli-
mator, ax is the betatron amplitude, and the betatron phase
advances with turn number t according to

φx(t) = 2πQxt + φx0, (3)

Similarly, the synchrotron displacement and angle are

xs = η δ = as sin(2πQst + φs0) (4)

x′
s = η′ δ = as sin(2πQst + φs0) (5)

where δ = Δp/p is the relative momentum offset, which
performs synchrotron oscillations according to the syn-
chrotron tune Qs. The variables η and η ′ (dispersion and
dispersion-prime) are optical quantities at the collimator,
complementing β and α. Only one of these four, β, is
positive-definite. The total angle x′

T of a particle is thus
written in general as

x′
T =

ax

β
[cos(φx) − α sin(φx)] + η′as sin(φs) (6)

A grazing particle is one that only just touches the edge
of a collimator displaced by xc when its betatron and syn-
chrotron displacements are simultaneously in time at their
extrema – either maxima or minima – such that

ax + |η| as = |xc| (7)

Simultaneous betatron and synchrotron oscillation extrema
are achieved on turn number t when the phases are

φx(t) = sgn(xc) π/2 (8)

φs(t) = sgn(xc) sgn(η) π/2 (9)

where the possibilities of negative displacement xc and
negative dispersion η are explicitly taken into account.

The grazing angle – the total angle of a grazing particle
– is found by substituting these phases into Eqn. 6 and by
using Eqn. 7 to eliminate ax. It is

x′
G = −α

β
xc + sgn(xc) sgn(η)

(
α

β
η + η′

)
as (10)

Thus the grazing angle depends linearly on the synchrotron
amplitude as and the linear slope of grazing angle with re-
spect to synchrotron amplitude is

dx′
G

das
= sgn(xc) sgn(η) g (11)

The dimensionless optical grazing function g is

g ≡
(

α

β
η + η′

)
(12)

Inspection confirms g to be the slope of the normalized dis-
persion ηN = η/

√
β scaled by the square root of β

g =
√

β η′
N (13)

Any linear dependence of the grazing angle on the syn-
chrotron amplitude may cause particles with some syn-
chrotron amplitudes to fall outside the angular acceptance
of the collimator. The rigorous synchrobetatron condition
for constant grazing angle is

g =
√

β η′
N =

α

β
η + η′ = 0 (14)

This is a condition on the optics, independent of the emit-
tance and the energy spread of the beam. Since β is
positive-definite, a collimator is ideally placed at a loca-
tion where normalized dispersion is at a local maximum or
minimum (η′

N = 0). This condition has already been noted
in the literature [1, 2, 3, 4]. Two particular trivial solutions
are immediately obvious:

1. η = η′ = 0: anywhere in a dispersion-free straight.

2. α = η′ = 0: e.g. in the middle of a quadrupole at
the boundary of a matched half-cell.

The following sections of this paper go beyond previous
work by recognizing that the behavior of g is worth study-
ing in its own right.
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GRAZING FUNCTION IN A FODO CELL

Consider a half-cell of length L with a quadrupole at
each end, enclosing one or more dipoles. If this half-cell
is matched (b′ = η′ = 0 at both ends) then g is zero at both
ends, and it is close to zero within the quadrupoles, as illus-
trated in Fig. 1. However, η ′

N and (hence) g are non-zero
within the half-cell, since the normalized dispersion ηN is
not exactly the same at both ends. A reasonable approxi-
mation is that η′

N evolves quadratically with the azimuthal
co-ordinate s according to

η′
N (s) ≈ 6 ΔηN

L3
s(s − L) (15)

where ΔηN is the total change from end to end. The ex-
treme values of η′

N and hence g are therefore expected near
the middle of the half-cell, at s = L/2, so that

|g|max ≈
√

βmid
3|ΔηN |

2L
(16)

The accuracy of this approximation depends on the detailed
layout of the dipoles within the half-cell.

A case of particular interest is a matched FODO half-cell
containing one dipole with a total bend angle of θ, filling
the half-cell. Substituting the standard thin-lens aprroxi-
mation for the optical functions in a matched FODO cell
[5] into Eqn. 16, we get:

|g|max ≈ θ
3

4
√

2

√
1 + C2

S2C
·

·
(
(2 − S)

√
1 + S − (2 + S)

√
1 − S

)

where S = sin (φ/2), C = cos (φ/2), and φ/2 is the phase
advance per half cell. In the case at hand when φ =90
degrees |g|max is predicted to be

|g|max ≈ 0.39 θ (17)

with no dependence on the half-cell length L.
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Figure 1: The grazing function in a matched FODO cell
with thick quads and filled with dipoles.

Figure 1 shows that when L = 25 m and θ = π/50,
then the maximum value occurs close to the mid half-cell,
with a value of |g|max = 0.0268 that is reasonably close
to the value of 0.0248 that is predicted by Eqn. 17. Nu-
merical testing confirms the prediction of Eqn. 17 that the
maximum value of the grazing function scales like

gmax ≈ 0.427 L0 θ1 (18)

when the phase advance per full-cell is 90 degrees. These
results apply only to a matched FODO cell. The grazing
function can become much larger in absolute magnitude
when an unmatched dispersion or betatron wave is present,
and in non-FODO locations.

THE GRAZING FUNCTION IN RHIC, SPS,
TEVATRON AND LHC

Table 1 shows that primary collimators in four hadron
colliders – RHIC, SPS, Tevatron and LHC – have grazing
functions with an order of magnitude of 0.003, either posi-
tive or negative [6, 7, 8, 9, 10, 11]. The rigorous condition
g = 0 has not been attained in these implementations of
amorphous and crystal primary collimators. Inspection of
the pairs of η′ and g values in Tab. 1 shows that there is
a systematically strong cancellation between the two terms
(α/β)η and η′ that comprise g in Eqn. 12, reflecting the
tendency for the normalized dispersion ηN to remain ap-
proximately constant in well matched optics, so that η ′

N

and hence g are small. How small is small enough for the
absolute value of the grazing function? How significant are
the non-zero g-values in Tab. 1?

A Relaxed Condition for Crystal Collimators
A discussion of implementation-specific details of mul-

tiple collimation systems is beyond the scope of this paper.
Nonetheless, a general discussion of the “acceptance an-
gle” σ′

A for protons incident on a crystal primary collimator
is possible. Even though σ ′

A depends strongly on crystal
material, geometry and beam energy, a rule of thumb the
crystal acceptance angle in channeling mode for Si crystals
is

σ′
A [μrad] ∼ 4 E−1/2 (19)

The crystal acceptance angle can be compared with the
grazing angle spread from the center to the edge of the
RF bucket (from synchrotron amplitude as = 0 to as =
aBucket). The grazing angle spread across the bucket

Δx′
TB = |g| aBucket (20)

is a natural scale that is especially relevant if a collimator is
being used to intercept beam escaping from the RF bucket.
Uncaptured beam is a major concern for the Tevatron and
the LHC, because such beam migrates into the abort gap
and can quench superconducting magnets – or even do ir-
reversible damage – during an emergency abort [12]. The
grazing angle spread across the bucket is recorded in the
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Table 1: Nominal optics, grazing functions, and other values at primary collimators in four accelerators. The collimator
type is “A” for amorphous or “C” for crystal. The last column records the grazing angle spread across the RF bucket.

Type α β η η′ g E aBucket σp/p σx Δx′
TB

[m] [m] [10−3] [10−3] [TeV] [10−3] [10−3] [mm] [μrad]
RHIC C −26.5 1155.0 −0.864 −16.2 3.6 0.10 1.50 0.50 7.36 5.40
SPS (UA9) C −2.21 96.1 −0.880 −19.0 1.2 0.12 1.10 0.40 1.06 1.32
Tevatron (T-980) C −0.425 67.5 1.925 15.0 2.9 0.98 0.45 0.14 0.55 1.31
LHC (IR3) A 1.72 131.2 2.100 −30.1 −2.5 0.45 0.97 0.31 1.01 2.43

7.0 0.35 0.11 0.26 0.88
LHC (IR7) A 2.06 152.0 0.36 −5.6 −0.7 0.45 0.97 0.31 1.09 0.68

7.0 0.35 0.11 0.28 0.25
LHC (crystal) C 1.93 136.1 0.341 −5.6 −0.8 0.45 0.97 0.31 1.03 0.78

7.0 0.35 0.11 0.26 0.28

last column of Tab. 1. In general (avoiding details) it is de-
sirable for this spread to be much less than the collimator
acceptance angle σ′

A. Thus the relaxed condition on the
grazing function for efficient collimation is

|g| � σ′
A

aBucket
(21)

How ignificant are ctual g- alues?
Figure 2 shows how the grazing angle spread across the

RF bucket Δ′
TB compares with the (approximate) channel-

ing acceptance angle σ ′
A given in Eqn. 19, across two or-

ders of magnitude in beam energy E. Both amorphous and
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Figure 2: Variation of the grazing angle spread across the RF
bucket as a function of energy for the collimators listed in Tab. 1.
The solid line is the channeling acceptance.

crystal primary collimator locations are shown. In all cases
the grazing function values g lead to total angular spreads
that are “safe” by about half an order of magnitude. As
expected, the grazing angle spread across the RF bucket
decreases (roughly) with the square root of energy E.

SUMMARY

The grazing function g parametrizes the rate of change
of total angle with synchrotron amplitude for grazing parti-
cles. The grazing function is a pure optics function, closely

related to the slope of the normalized dispersion function.
It has an ideal value of g = 0 at the collimator.

Design values for past, present and future crystal imple-
mentations in RHIC, SPS, Tevatron and LHC suggest that
the natural realistic values of g are acceptably small, al-
though they are not negligible. Planning for future crys-
tal implementations should always include a grazing func-
tion analysis, both in design (making g zero, or small
enough) and in error analysis (ensuring that g cannot be-
come anomalously large).
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