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Abstract 
This paper reports on results of a small-signal analysis 

of space-charge waves on a relativistic elliptic electron 
beam immersed in a strong axial magnet field in a 
perfectly-conducting tunnel with an elliptic cross section. 
A dispersion relation for the space-charge waves is 
derived analytically. A computer code, Elliptic Beam 
Small Signal (EBSS), is developed and used in studies of 
the dispersion characteristics of fast- and slow-space-
charge waves on relativistic elliptic electron beams. 
Applications of the theory in elliptic-beam klystrons are 
discussed. 

INTRODUCTION 
Elliptic electron beams have a variety of applications in 

coherent radiation sources and particle accelerators.  
Recently, there have been vigorous theoretical and 
experimental studies of elliptic beam systems, including  
elliptic electron beam sources [1,2], elliptic beam 
focusing systems [3-7], sheet-beam klystrons [8,9] and 
traveling wave tubes (TWTs) [10,11]. In particular, 
relativistic elliptic electron beams have applications in the 
research and development of a new class of elliptic- or 
sheet-beam klystrons which have the potential to 
outperform conventional klystrons in terms of power, 
efficiency, and operating voltage. They have lower space-
charge energies which allow higher currents to be used in 
beams and higher power devices. Furthermore, the elliptic 
cross section allows more efficient coupling to radio 
frequency structures than circular beams. Cavity spacing 
in an elliptic-beam klystron is dependent on the beat 
wavelength of space charge waves on the elliptic beam. 
While space-charge waves on circular beams have been 
studied extensively [12-14], there has been little 
theoretical study of space-charge waves on elliptic 
electron beams until this paper. 

THEORY 
In this paper, we report on results of a small-signal 

analysis of space-charge waves on a relativistic elliptic 
electron beam in a perfectly-conducting tunnel with an 
elliptical cross section. We consider a relativistic elliptic 
electron beam propagating in an infinitely strong axial 
magnetic field inside a perfectly conducting tunnel whose 
inner surface )(ηξξ t=  corresponds to an elliptic pipe which 
approximates an equipotential surface [6] produced by the 
equilibrium beam charge distribution. The equilibrium 
electron density and flow velocity profiles are assumed to 
be the following [15]: 
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Figure 1: Cross section of a relativistic elliptic electron 
beam system. 
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where ξ  is the radial elliptic coordinate in the elliptic-
cylindrical coordinate system defined as 

ηξ coscoshfx =  and ηξ sinsinhfy =  with 
22 baf −= , )/(tanh 1 abb

−== ξξ  is the beam 
boundary, c is the speed of light in vacuum, and bβ  is a 
constant. Equations (1) and (2) fully specify the 
equilibrium state of a relativistic elliptic electron beam.  
We introduce a small sinusoidal perturbation into the 
system so that the general form of a field variable ψ  is 

( ) ( ) )(
0 ,, tkzieyxyx ωδψψψ −+= ,              (3) 

where ( )yx,0ψ  denotes the equilibrium field variable and 
( )yx,δψ  denotes the amplitude of the perturbation.  From 

the linearized cold-fluid equations, it is readily shown that 
the eigenvalue equation is 
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where 2222 / ckp ω−= , -e is the electron charge, me is the 
electron mass, ε0 is the vacuum permittivity, and 

2/12 )1( −−= bβγ  is the relativistic factor. The boundary 
conditions for the eigenvalue equation are  
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Solving Eq. (4) by separation of variables under the 
boundary condition in Eqs. (5) and (6) and making use of 
the fact that zEδ  must be finite, we obtain 
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In Eq. (8), An and Bn are coefficients; δnl is the 
Kronecker delta; ce2n  is the even angular Mathieu 
function of order 2n, and ce2n and FeK2n are the first and 
second radial Mathieu functions of order 2n [16];  
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where the elements of S and T are 
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Matching the boundary condition in Eq. (7) yields the 
dispersion relation 

                             0),(det =kωD .                          (13) 

In Eq. (13), 
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where the prime denotes derivative with respect to ξ and 
the elements of U and W are 
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In the limit of a circular beam (b→a) in a circular pipe 
of radius R, we find that the angular Mathieu functions 
become sinusoids and that the radial Mathieu functions 
become modified Bessel functions scaled by a constant, 

e.g., )
4

,(Fek
22

0
fp

b −ξ  becomes π2/)(0 paK− , where a 

is the beam radius in cylindrical coordinates. The matrix  
D becomes diagonal, and Eq. (13) reduces to the known 
dispersion equation for a solid circular beam in a circular 
pipe [13], i.e., 
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where In and Kn are the first- and second-kind modified 
Bessel functions of order n. 

We have developed an Elliptic Beam Small Signal 
(EBSS) code for computing the roots of 0),(det =kωD  
for given system parameters. The EBSS makes use of 
Python and the SciPy library for the angular Mathieu 
functions, Bessel functions, and numerical integration.  In 
the EBSS code, we approximate the radial Mathieu 
functions using a finite number of terms from the Bessel 
function series described in [16]. To benchmark this 
approximation, we have computed tables of values of the 
radial Mathieu functions using EBSS and have compared 
them to those generated by Mathematica, obtaining 
identical results.  We have also benchmarked the EBSS 
code against known numerical results for the case of a  
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Table 1: Parameters of a Relativistic Elliptic Electron Beam 
Current 111 A 
Voltage 120 kV 
Beam semi major axis a  0.5 cm 
Beam semi minor axis b  0.05 cm 
Beam tunnel semi major axis ta  0.8 cm 

Beam tunnel semi minor axis tb  0.6 cm 
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Figure 2: Dispersion characteristics obtained from Eq. 
(13) for the parameters listed in Table 1. The solid curve 
is for the fast-space-charge waves, whereas the dashed 
curve is for the slow-space-charge waves. 

 
circular beam in a circular pipe, obtaining identical 
results.  Because the EBSS code also truncates the 
matrices to a finite size, we have tested the convergence 
of the results for elliptic beams.  Typically, the results 
converge to within 0.1% for matrices of size 33× .  

Figure 2 shows a plot of the wave dispersion 
characteristics for a 10:1 elliptic beam with the parameters 
listed in Table 1. The 10:1 elliptic beam is relevant to the 
development of a 10 MW, L-Band sheet- or elliptic-beam 
klystron for the International Linear Collider (ILC) [17]. 
Both fast- and slow-space-charge waves exist, as in the 
case of circular beams. For the frequencies plotted, the 
long-wavelength limit is applicable, which explains why 
each curve is linear. The difference 

fs kkk −=Δ  between 
the wave numbers of the slow- and fast-space-charge 
waves for a given frequency is inversely proportional to 
the beat wavelength of the system which determines the 
spacing of rf cavities when constructing an elliptic-beam 
klystron.  For a 1.3 GHz elliptic-beam klystron, the 
spacing between the input and second rf cavities is 

9.17/ =Δ= kL π  cm. 

CONCLUSIONS 
A theory of small-signal space-charge waves on 

relativistic elliptic electron beams has been presented. A 

dispersion relation has been derived.  A computer code 
has been developed and used for numerical studies of 
dispersion characteristics. Applications of the theory in 
elliptic-beam klystrons have been discussed. 
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