
SERVER DEVELOPMENT FOR NSLS-II PHYSICS APPLICATIONS
AND PERFORMANCE ANALYSIS*

Guobao Shen #, Marty Kraimer, BNL, Upton, NY 11973, U.S.A.

Abstract
The beam commissioning software framework of

NSLS-II project adopts a client/server based architecture
to replace the more traditional monolithic high level
application approach. The server software under
development is available via an open source sourceforge
project named epics-pvdata, which consists of modules
pvData, pvAccess, pvIOC, and pvService. Examples of
two services that already exist in the pvService module
are itemFinder, and gather. Each service uses pvData to
store in-memory transient data, pvService to transfer data
over the network, and pvIOC as the service engine. The
performance benchmarking for pvAccess and both gather
service and item finder service are presented in this paper.
The performance comparison between pvAccess and
Channel Access are presented also.

INTRODUCTION
For an ultra low emittance synchrotron radiation light

source like NSLS II, the control system requirements,
especially for beam control are tight. To control and
manipulate the beam effectively, a use case study has
been performed to satisfy the requirement [1] and
theoretical evaluation has been performed [2]. The
analysis shows that model based control is indispensable
for beam commissioning and routine operation. However,
there are many challenges such as how to re-use a design
model for on-line model based control, and how to
combine the numerical methods for modeling of a
realistic lattice with the analytical techniques for analysis
of its properties.

To satisfy the requirements and challenges, adequate
system architecture for the software framework for beam
commissioning and operation is critical. The existing
traditional approaches are self-consistent, and monolithic.
Some of them have adopted a concept of middle layer to
separate low level hardware processing from numerical
algorithm computing, physics modelling, data
manipulating and plotting, and error handling. However,
none of the existing approaches can satisfy the
requirement. A new design has been proposed by
introducing service oriented architecture technology
[3][4][5][6][7], and client interface is undergoing [8].

The design and implementation adopted a new EPICS
implementation, namely epics-pvdata [9], which is under
active development. The implementation of this project
under Java is close to stable, and binding to other
language such as C++ and/or Python is undergoing.

In this paper, we focus on the performance
benchmarking and comparison for pvAccess and Channel
Access, the performance evaluation for 2 services, gather
and item finder respectively.

PVACCESS PERFORMANCE
PvAccess is a new communication protocol that

supports the transfer of arbitrary data structures rather
than the fixed set of data types supported by Channel
Access, and will act as a successor of Channel Access.

To satisfy the requirements as described in [1][2], a
performance benchmarking is indispensable. A study was
performed to measure and compare the performance of
Channel Access and pvAccess.

Environment Configuration
The system configuration is as shown in Figure 1. All

servers and client are running Debian LINUX system.

Figure 1: Benchmarking Environment Configuration.

The router used in this benchmarking was a GS108
GIGABIT switch from NETGEAR, which has 8 ports.
All clients and servers are connected to this router
through a wired network.

Four (4) different cases were performed by combining
the client and server in different ways, as listed in Table
1.

Table 1: Client-Server Combinations

Test Case Client Server

1 Client 01 Server 01

2 Client 02 Server 02

3 Client 01 Server 01

4 Client 02 Server 02

Array Processing Performance
The purpose of this benchmarking is to measure the

array transfer rate, with varying array sizes, between array
records on a pvIOC and a client. A client sends out a

__

* Work supported under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515
#shengb@bnl.gov

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA MOP252

Instrumentation and Controls

Tech 04: Control Systems 585 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

command to get the value from 10 array records. When
all arrays are received, the next command is sent. For this
benchmarking, pvAccess sends network packets without
delay. For small arrays pvAccess has better performance
and for large arrays the performance is identical. Figure 2
shows the results.

Figure 2: Array performance and comparison between CA
and pvAccess. The horizontal axis is record array size.
Vertical axis is records processed per second (also the
number of array transferred per second). Dashed lines are
for CA, and solid lines are for pvAccess.

ProcessGet Performance
This test compares the performance of a scalar database

under different client/server combinations. The client
issues a processGet (process and get result) request to a
number of channels. A plot to show how many records
can be processed in one second is shown as Figure 3.

Figure 3: ProcessGet performance and comparison
between CA and pvAccess. The horizontal axis is number
of channels (log scale). Vertical axis is processGet per
second. Dashed lines are for CA, and solid lines are for
pvAccess.

This test indicates that for simultaneous processGets for
many channels, pvAccess and CA have similar
performance, but for few channels CA is better.

A full report can be found in [11], which describes the
performance of pvAccess and compares it with that of
Channel Access.

SERVICE PERFORMANCE
There are several services have been prototyped as

described in [6][7]. The performance benchmarking was
conducted for 2 major services, item finder service and
gather service respectively. Original implementation for
above 2 services can be found in [6], and also the data
flow. More detail can be found in [7].

Gather Performance
Basic idea of the gather service is that a client sends a

PV list with a string to this service; the service then
creates a pvRecord dynamically with the record name
given by the client. The new created pvRecord acts as a
bridge between low level V3 IOCs, and the client. The
gather service supports put, get and monitor operation.

The performance was evaluated under the environment
shown in Figure 1, and client server combinations are
shown in Table 2.

Table 2: Client-Server Combinations for Gather

Test Case Client Server V3 IOC

1 Server 01 Server 01 Server 01

2 Client 02 Server 01 Server 01

3 Client 02 Server 01 Server 02

The benchmarking was performed for get and put
operation with scalar channel. The result shows that to
process 1,000 channels, the time is less than 10 ms. In
another word, it has a capability to update 1,000 PVs with
a frequency of 100Hz. The result for a varying number of
V3 channels is shown as Figure 4.

Figure 4: Gather service performance for get and put
processing with different number of V3 channels. The
horizontal axis is number of V3 channel, and vertical axis
is processing time in milliseconds.

Item Finder Performance
The item finder service provides a dictionary service.

The basic idea is to get a list of physics elements and its

MOP252 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

586C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Instrumentation and Controls

Tech 04: Control Systems

associated properties such as EPICS PV names for read-
back, set-point, temperature, and so on. It is designed and
prototyped against MySQL relational database (RDB). A
use case is to query all horizontal BPM PV names with
specified physics name.

The performance was evaluated under the environment
shown in Figure 1, and client server combinations shown
in Table 3. The underneath relational database, which
uses MySQL as the RDBMS, runs on server 01.

Table 3: Client-Server Combinations for Item Finder

Test Case Client Server

1 Client 02 Server 01

2 Server 01 Server 01

The result is demonstrated as Figure 5. A query for
1,400 items takes less than 30 ms.

Figure 5: Item finder performance. The horizontal axis is
item number to be queried, and vertical axis is processing
time with unit in milliseconds.

SUMMARY
In this paper, we conducted a performance

benchmarking for pvAccess protocol, and compared the
performance of pvAccess with that of Channel Access.
The results shows that pvAccess has a better performance
when processing array. For processGet operation,
pvAccess has identical performance for many hannels,
but a slight worse performance for few channels. The
benchmarking was conducted using pvAccess
implemented in Java, and Channel Access implemented
in C/C++. A future benchmarking will be carried out once
a C++ version of pvAccess is available.

The gather service and item finder service
demonstrated a reasonable performance, and which is
acceptable for physics application development.

ACKNOWLEDGEMENT
The authors would like to thank Matej Sekoranja at

COSYLAB for his contributions on epics-pvdata
development. They want to give their thanks to Leo
Dalesio at BNL for his continuous support and
encouragement.

REFERENCES
[1] J. Bengtsson, et al, “NSLS-II: Model Based Control

– A Use Case Approach”, NSLS-II Tech Note 51
(2008).

[2] J. Bengtsson, “Design and Control of Ultra Low
Emittance Light Sources”, Proc. of ICAP09 (2009),
TU3IOPK04, San Francisco, USA.

[3] G. Shen, “A Software Architecture for High Level
Applications”, Proc. of PAC09 (2009), FR5REP004,
Vancouver Canada.

[4] G. Shen, “A Modular Environment for High Level
Applications”, Proc. of ICALEPCS09 (2009),
THP094, Kobe Japan.

[5] P. Chu, et al, “Service Oriented Architecture for
High Level Applications”, Proc. of IPAC10 (2010),
TUPEC072, Kyoto Japan.

[6] G. Shen, et al, “Prototype of Beam Commissioning
Environment and its Applications for NSLS-II”,
Proc. of IPAC10 (2010), WEPEB026, Kyoto Japan.

[7] G. Shen, et al, “A Novel Approach for Beam
Commissioning Software using Service Oriented
Architecture”, Proc. of PCaPAC10 (2010),
WEPL037, Saskatoon Canada.

[8] G. Shen, et al, “NSLS-II High Level Application
Infrastructure and Client API Design”, this Proc.,
MOP250.

[9] http://sourceforge.net/projects/epics-pvdata/
[10] M. R. Kraimer, et al, “Evolution of the EPICS

Channel Access Protocol”, Proc. of ICALEPCS09
(2009), MOD005, Kobe Japan.

[11] G. Shen, “Performance Analysis of EPICS Channel
Access and pvAccess”, NSLS-II Tech Note 082
(2010).

[12] G. Shen, et al, “Services Development for NSLS-II
Physics Application Environment using pvService”,
EPICS Collaboration Meeting Fall 2010, BNL.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA MOP252

Instrumentation and Controls

Tech 04: Control Systems 587 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

