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Abstract 
The high-brightness design of the NSLS-II lattice limits 

uncorrelated vertical RMS motion of the multipole 
magnets on a girder to less than 25 nm. The stability of 
the girder-magnets assembly is affected by factors such as 
ambient ground motion and temperature fluctuations in 
the storage ring.   The stability design optimization of the 
NSLS-II magnets and their girder support system is 
discussed in this paper and stability test results for a 
prototype girder-magnets assembly are presented. 

INTRODUCTION 
The NSLS-II, a new 3rd generation light source under 

construction at the Brookhaven National Laboratory, 
consists of a 3-GeV storage ring designed to provide an 
ultra high-brightness beam. The natural horizontal 
emittance of the beam is 2 nm but is expected to be below 
1 nm when damping wigglers are installed. The vertical 
emittance is chosen to be 8 pm, the diffraction limit for 1 
Angstrom radiation. 

Stringent mechanical stability and magnet alignment 
requirements are specified for the storage ring magnets to 
produce a beam of this low emittance and reasonable 
lifetime. Mechanical stability tolerances, which cover 
both the vibration and thermal aspects, require 
uncorrelated RMS motion of less than 25 nm in the 
vertical direction. This is based on 10% of the minimum 
vertical size of the beam. The allowed RMS motion in the 
horizontal direction is 10 times larger corresponding to 
the beam size in this direction. The alignment tolerance 
between magnets on the same girder is ± 30 μm.  

The design preferences for meeting the stability and 
alignment requirements are often contradictory. The 
NSLS-II girder support system is optimized to balance 
these requirements with a cost-effective design. 

GIRDER SUPPORT SYSTEM DESIGN 
A vibrating wire technique [1] has been adopted at 

NSLS-II to ensure precision alignment of the magnets to 
within ± 30 μm. This technique requires the alignment to 
be performed outside the storage ring tunnel in a 
temperature and humidity-controlled environmental room 
with a temperature stability of ± 0.1 °C. After the 
precision alignment the girder-magnet assembly is 
transported to the storage ring. A series of tests on the 
girder-magnet assembly showed that the gravity 
deflection of the assembly supported at the two ends had 
an unacceptable scatter of ~15 μm. This led to the concept 

of supporting the girder at multiple support points to 
further strengthen the stiff girder as shown in Figure 1. In 
addition, the top surface of the girder is surveyed to 
establish its profile after completing the precision 
alignment of the magnets. This profile will be reproduced 
in the storage ring after the tunnel temperature is 
stabilized to ± 0.1°C. The girder profiling is accomplished 
by laser trackers using fiducial mounts on the top surface 
of the girder directly above the height-adjustment bolts 
(Fig. 1). 

 

Figure 1: NSLS-II girder support system design. 
 
The support points for every ~1.5 meter length of the 

girder also ensure that the natural frequencies of the 
girder-magnet assembly would be 30 Hz and above. This 
prevents amplification of the uncorrelated ambient floor 
motion below 30 Hz, which at the NSLS-II site is 
expected to be less than 20 nm. The ambient motion 
above 30 Hz (~1 nm) is not significant even when 
amplified as shown in the next section. The vibration 
stability criterion is, therefore, easily met with this over-
constrained design of the support system.  

The over-constrained girder, however, is not free to 
expand or contract with the tunnel temperature 
fluctuations. This introduces bending deformations in the 
girder, leading to magnets’ misalignment, with the same 
time cycle as seen by the tunnel air (designed to be 1 hour 
for the NSLS-II tunnel). In order to prevent the girder 
from bending, viscoelastic pads (Fig. 1) are used between 
the floor and the girder at all supports-points except at 
one fixed support in the middle. These pads have the 
additional advantage of further suppressing the vibration 
amplification [2]. 
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rod of ~ 1 m length was installed with one end clamped 
and a displacement sensor mounted at the other free end 
of the rod, to measure the horizontal expansion.  The air 
temperature in the environmental room was cycled 
between ± 0.3 °C with one hour time cycle.  Temperature 
sensors were mounted on the invar rod (red curve in 
Fig.6) which showed a temperature fluctuation of ~0.25 
°C. The displacement reading measured on the Invar rod 
showed two distinct components (blue curve in Fig. 6): an 
amplitude ~ 0.25 μm (1-hour cycle) which is consistent 
with the CTE of invar (1μm/m/°C) for a temperature 
fluctuation of 0.25 °C, and an amplitude of ~1 μm with 
12-hour cycle, which clearly is related to the day-night 
temperature variation. 

Analyses results show that the stiff and over-
constrained (grouted interface between the girder floor 
plate and the concrete floor) girder resists the longitudinal 
floor motion (1 μm/m) by bending-type deformations, 
resulting in a relative vertical deflection, ~300 nm over 
the effective length of the girder (maximum distance 
between the center and end-magnet on the girder) (Fig. 7). 

(a) 

(b) 

 
Figure 7: (a) FEA results - girder deflection due to diurnal 
floor expansion, (b) Girder deflection over the effective 
girder length. 
 

To relax the over-constrained condition without losing 
vibration stability we evaluated the concept of making the 
mounting pad of the girder as a viscoelastic sandwich 
with thick top and bottom steel plates (Fig. 8a).  The 
intermediate adhesive film of viscoelastic material 
(3MTM) allows relative displacement between the plates to 
absorb the slow diurnal floor motion without causing the 
girder to deform (Fig. 8b).  Vibration tests done on this 
configuration showed a slight reduction in the horizontal 
amplification factor as well because of the vibration 
damping property of the viscoelastic material. 

(a) 

(a) 1.5” top plate, (b) 0.01” viscoelastic pad, (c) 1” steel 
bottom plate , (d) 1” grouted steel plate, (e) grout. 

 
(b) 

Figure 8: (a) Girder mounting base design incorporating 
the viscoelastic material, (b) FEA vertical deflection of 
girder with the viscoelastic pad. 

 
Tests were conducted in a temperature-controlled 

environmental room to test that the viscoelastic pads 
allowed free relative motion between the floor and the 
girder.  Displacement sensors were mounted at locations 
A and B which are at a distance of 3 and 1.5 m from the 
center of the girder, respectively (Fig. 9).  The mounting 
frame of the displacement sensor was fixed to the grouted 
part of the girder mounting base and the measuring head 
of the displacement sensor was in contact with the top 
movable plate, thus measuring the relative motion 
between the floor and the girder.  
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