
Abstract

A semi-numerical method of integrating the Vlasov

equation to obtain beam transfer functions directly as a

function of frequency is presented. The results are com-

pared with beam transfer functions calculated via particle

tracking and excellent agreement is shown. The technique

works well with both transverse wakes and detuning wakes

from space charge.

INTRODUCTION AND THEORY

The stability and response properties of particle beams

are encapsulated in beam transfer functions (BTFs) [1, 2,

3]. BTFs are relatively easy to measure making their ac-

curate calculation of great practical interest. In this paper

we will present two independent ways to calculate bunched

beam transverse beam transfer functions, and show their

agreement for some challenging parameters. To begin let

θ denote azimthh, which increases by 2π each turn. Let

t be clock time and let τ denote particle arrival time with

respect to the synchronous particle so that θ = ω0(t − τ),
with ω0 the synchronous angular revolution frequency. We

use θ as the time-like variable and, to make a precise cross

check possible, take linear rf so that

dτ

dθ
= Qsǫ

dǫ

dθ
= −Qsτ, (1)

where Qs is the synchrotron tune and ǫ is the energy vari-

able. with We consider a single transverse variable x and

uniform focusing. Collective forces are taken in the contin-

uum approximation with dx/dθ = p and

dp

dθ
= −Q2

β(ǫ)x+ Fe(θ, τ)

+ 2Qβ∆Qsc(τ)[x − x̄(θ, τ)]

− q

2πP0ω0

2τb
∫

0

W⊥(τ1)D(θ, τ − τ1)dτ1, (2)

where Qβ(ǫ) = Q0 + Qsǫω0ξ/η is the betatron tune,

with chromaticity ξ and frequency slip factor η, Fe(θ, τ)
is the external driving force, ∆Qsc(τ) is the space charge

tune shift as a function of longitudinal position in the

bunch, and x̄(θ, τ) is the average beam offset. The wall

induced forces are due the the transverse wake potential

W⊥(τ) and driven by the instantaneous dipole moment
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D(θ, τ) = x̄(θ, τ)I(τ) with I(τ) the bunch current, q the

particle charge, and P0 the synchronous momentum. The

force is limited to a single bunch of full length 2τb but can

be extended to uniformly filled rings.

To solve (1) and (2) using the Vlasov equation first in-

troduce amplitude angle variables defined by τ = a sinψ
ǫ = a cosψ. Since all particle have constant a,

∂F

∂θ
+ p

∂F

∂x
+
dp

dθ

∂F

∂p
+Qs

∂F

∂ψ
= 0, (3)

where dp/dθ is given by Eq (2). We normalise F so that

Fdxdpadadψ is the number of particles in the phase space

volume. To continue we define 3 transverse moments [4],

{X(ψ, a, θ), P,Ψ} =

∫

dxdpF (x, p, a, ψ, θ) {x, p, 1} .
(4)

This gives

∂X

∂θ
+Qs

∂X

∂ψ
= P (ψ, a, θ), (5)

∂P

∂θ
+Qs

∂P

∂ψ
= −Q2

β(ǫ)X + Fe(θ, τ)Ψ

+2Qβκ
[

X
∫

dǫΨ − Ψ
∫

dǫX
]

− qΨ

2πP0ω0

∞
∫

0

dτ1W⊥(τ1)q
∫

dǫX(ǫ, τ − τ1) (6)

where ∆Qsc(τ) = κ
∫

dǫΨ, x̄(τ)
∫

dǫΨ =
∫

dǫX and, for

example,
∫

dǫX ≡
∫

a1da1dψ1δ(a sinψ−a1 sinψ1)X(ψ1, a1, θ),

and the occurences of τ and ǫ in (6) are understood to be

shorthand for the amplitude angle representations. Next

we substitute (5) in (6) and drop second partial derivatives

with respect to ψ. We take Fe(θ, τ) = F0(τ) exp(−iQθ),
and we take X = X1 exp(−iQθ − iξω0τ/η), with Q =
Q0 + ∆Q. This yields
{

∆Q+ iQs
∂

∂ψ
+ ∆Qsc(a sinψ)

}

X1(ψ, a) = F̃ (τ)Ψ(a),

(7)

where

F̃ (τ) =
− eiξω0τ/ηF0(τ)

2Q0

+ κ
∫

dǫX1

+q2
∞
∫

0

dτ1
W⊥(τ1)e

iξω0τ1/η

4πQ0P0ω0

∫

dǫX1(ǫ, τ − τ1). (8)
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The strategy is to solve (7) for D1 = q
∫

dǫX1 resulting

in a one dimensional integral equation for D1 which will

be solved numerically. To proceed let ∆Qsc(a sinψ) =
λ(a) + dΛ/dψ where Λ(a, ψ) = Λ(a, ψ + 2π). Substitute

X1 = X2 exp(iΛ/Qs) yielding

{

∆Q+ iQs
∂

∂ψ
+ λ(a)

}

X2 = e− iΛ/QsF̃Ψ. (9)

Multiply both sides by the integrating factor exp(−iψ(λ+
∆Q)/Qs) and integrate from ψ to ψ + 2π employing the

periodicity of X2. Backsubstitute X1 giving

X1 =
ΨeiG(a, ψ)

QsR(a)

ψ+2π
∫

ψ

dψ1F̃ (a sinψ1)e
− iG(a, ψ1)

(10)

where R(a) = 1 − exp(−2πi(λ+ ∆Q)/Qs) and

G(τ, ψ) =

ψ
∫

0

dψ1

∆Q+ ∆Qsc(a sinψ1)

Qs
.

To proceed note that

D1(τ) = q

∫

adadψδ(τ − a sinψ)X1(a, ψ)

yielding

D1(τ) =

∫

Ĝ(τ, τ1)qF̃ (τ1)dτ1 (11)

where

qF̃ (τ) =
− eiξω0τ/ηqF0(τ)

2Q0

+ κD1(τ)

+
q2

4πQ0P0ω0

∞
∫

0

dτ1W⊥(τ1)e
iξω0τ1/ηD1(τ − τ1) .(12)

and

Ĝ(τ, τ1) =
∞
∫

0

ada
2π
∫

0

dψδ(τ − a sinψ)Ψ(a)eiG(a, ψ)

K(a)
ψ+2π
∫

ψ

dψ1δ(τ1 − a sinψ1)e
− iG(a, ψ1) (13)

whereK = iΨ/QsR. To proceed assumeD1(τ) is defined

at a set of equidistant points τk = k∆ and that D varies

linearly between these points. Then

qF̃ (τ) =

N
∑

k=−N

akT (τ − k∆),

where T (x) is a triangle function of height 1 and half width

at base ∆. For smooth bunches D(τ) is zero at the ends of

the bunch so we take ∆ = τb/(N + 1) where τb is the half

bunch length. Next we do the integral over ψ in (13). For

any smooth function h(a, ψ),

2π
∫

0

δ(τ − a sinψ)h(a, ψ)dψ =
∑

p=1,2

h(a, ψp)
√

a2 − τ2
,

where the two angles satisfy sinψ1,2 = τ/a and the in-

tegral vanishes for |τ | > a. Next we define a new radial

variable u defined by u2 = a2 − τ2 so udu = ada. The

dipole density is defined at the same set of lattice points as

F̃ so

D1(m∆) ≡ Dm =
N

∑

n=−N

anMm,n, (14)

where

Mm,n =

√
τ2

b
−m2∆2

∫

0

duK(a)
∑

p=1,2

eiG(a, ψp)

ψp+2π
∫

ψp

dψ1T (n∆ − a sinψ1)e
− iG(a, ψ1). (15)

In integral (15) a =
√
u2 +m2∆2 and sinψp = m∆/a.

We have written a program which solves (14) with matrix

element (15) and an from (12),

an =
− eiξω0n∆/ηqF0(n∆)

2Q0

+ κDn

+
q2

4πQ0P0ω0

2N+1
∑

k=0

∆W⊥(k∆)eiξω0k∆/ηDn−k. .(16)

SIMULATIONS

The solution of Equations (1) and (2) using particle track-

ing is straightforward [5, 6, 7, 8]. Before considering

a sinusiodaly drive BTF we consider forces of the form

F0(τ, θ) = f(τ) cos(Qθ) exp(gQ)δp(θ) where δp is the

periodic delta function, Q is the real part of the drive tune,

g is the imaginary part of the drive tune and f(τ) is non-

zero only over the full bunch length, 2τb. SupposeDf (θ, τ)
is the dipole response to a kick f(τ) given at θ = 0. Then

the response from all the kicks is

D(θ, τ) =

∞
∑

m=−∞

Df (θ−2πm, τ) cos(2πmQ) exp(2πgm).

(17)
To obtain a scalar we take the inner product

D̂(θ) =
τb
∫

−τb

dτf(τ)D(θ, τ)

=
∞
∑

m=−∞

D̂f (θ − 2πm) cos(2πmQ) exp(2πgm)

For a pickup at a fixed location one obtains the time series

D̂(0), D̂(2π), D̂(4π), . . ., these values may be obtained

with a single simulation. As long as D̂f (θ) does not grow

more quickly than exp(gθ) we will have

D̂(2πk) = [AQ cos(2πkQ) +BQ sin(2πkQ)] exp(2πgk)
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with

AQ + jBQ =
∞
∑

ℓ=0

B̂f (2πℓ) exp(2πℓ[jQ− g]) (18)

Hence, the entire BTF can be obtained with one simulation.

For a real beam transfer function the force at the pickup is

sinusiodal. We assume the frequency is nω0 + ω1 where n
is an integer, |ω1| ≤ ω0/2. Then the driving force is given

by

Fe(θ, τ) = δp(θ) cos[(nω0 + ω1)t],

= δp(θ) cos[(nω0 + ω1)(τ + θ/ω0)],

≈ δp(θ) cos(nω0τ) cos(ω1k(t)T0)

−δp(θ) sin(nω0τ) sin(ω1k(t)T0) (19)

where T0 = 2π/ω0 and k(t) = nint(t/T0). In a real BTF

only the response at the drive frequency is measured so,

with a sinusiodal kick one needs to run two simulations.

One with a kick proportional to sin(nω0τ) and another

with kick cos(nω0τ). During each simulation one takes in-

ner products of the response with each sinusoid every turn.

One finds

BTF (ω1) =

∞
∑

m=0

(Cm + jSm)e− (jω1 + ǫ)mT0

with

Cm =

τb
∫

−τb

dτDcos(2πm, τ)e
− jnω0τ ,

where Dcos(θ, τ) is the response to a cosine kick at θ = 0,

and similarly for Sm. In these equations we have used

the electrical engineering convention with j = −i and

allowed for an exponentially growing drive ∝ exp(ǫt).
The driving terms in the Vlasov approach are given by

F0(τ) = exp(±jnω0τ) for the Q ∓ n sidebands, respec-

tively. Figure 1 shows upper and lower sideband BTFs with

nω0 = ±π/2τb, varying chromaticity and a step function

wake of size comparable to what is needed for a mode cou-

pling instability. The peak space charge tune shift is 4 times

the synchrotron tune. For more extreme parameters the dis-

agreement increases and we continue to look for errors.
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Figure 1: Simulated BTFs (solid lines) and those following

from Eq (14) (crosses).
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