
BEAM-BEAM LIMIT IN AN INTEGRABLE SYSTEM* 

A. Valishev#, S. Nagaitsev, FNAL, Batavia, IL 60510, USA 
D. Shatilov, BINP, Novosibirsk, 630090, Russia 
V. Danilov, ORNL, Oak Ridge, TN 37831, USA

Abstract 
Round colliding beams have been proposed as a way to 

push the attainable beam-beam tune shift limit, and recent 
successful experiments at the VEPP-2000 collider at 
BINP demonstrated the viability of the concept. In a 
round-beam system the dynamical stability is improved 
by introducing an additional integral of motion, which 
effectively reduces the system from a two and a half 
dimensional to one and a half dimensional. In this report 
we discuss the possible further improvement through 
adding the second integral of motion and thus making the 
system fully integrable. We explore the ultimate beam-
beam limit in such a system using numerical simulations 
taking into account various imperfections. 

INTRODUCTION 
The strong nonlinearity of transverse focusing force is 

inherent to beam-beam interaction and affects the stability 
of particle motion in the present circular colliders. The 
beam-beam kick localized in a short interaction length 
along the accelerator circumference represents a nonlinear 
and time-dependent excitation of the otherwise linear 
betatron motion in the rest of the machine. In such 
systems, a multitude of resonances lead to particle 
diffusion and to chaotic-bounded motion, which limits the 
attainable beam brightness and collider performance. The 
typical maximum value of beam-beam parameter ξ in 
such ‘conventional’ machines is about 0.05÷0.06 for 
electron colliders, and up to 0.03 for hadron colliders due 
to the absence of synchrotron radiation damping. 

In an attempt to mitigate the beam-beam effect, 
Krishnagopal and Siemann [1] analyzed the effect of the 
strong bunch length σz on the magnitude of resonances 
with the use of canonical perturbation theory. They 
concluded that ‘…the finite longitudinal extent of the 
beam-beam interaction results in averaging of the betatron 
phase over the collision, which mitigates the destructive 
effects of resonances’. Conversely, the synchrotron 
oscillations of the test particle lead to a greater depth of 
modulation and enhance the effect of resonances. Since 
the lengths of the two colliding bunches are usually equal, 
an optimal length should exist at which the two effects are 
compensating one another. The ratio of the bunch length 
to the beta-function of the order of one was determined as 
viable. 

In further work along this direction Y. Alexahin [2] and 
T.Sen [3] studied the effect of phase averaging on the 

Tevatron performance, and also predicted the optimal 
σz/b* ≈ 1. 

The growing interest to integrable systems in 
mathematical physics motivated Danilov and 
Perevedentsev to investigate the application of these 
systems to accelerators and colliding beams in particular 
[4, 5]. In a round colliding beams system, the beam-beam 
interactions as well as the transport through accelerator 
lattice possess axial symmetry. This results in the 
existence of an additional integral of motion, the 
longitudinal component of the angular momentum. An 
important consequence of the additional integral of 
motion is the elimination of transverse coupling 
resonances.  

In Ref. [5], a round colliding beam system is proposed, 
which has two integrals of motion. The full integrability is 
achieved through proper shaping of the longitudinal 
bunch density, which makes the system Hamiltonian time-
independent. The line charge density λ in this case must 
be inversely proportional to the beta-function β: 
λ(2s)=C/β(s). In the case of no external focusing in the 
interaction region, the beta-function is a quadratic 
function of the azimuth s, β(s)= β*+s2/β*, and the proper 
‘ideal’ longitudinal distribution is  

λ(s) = C
1+ (s / 2β*)2

. 

An important property of the fully integrable system is 
that the exact shape of transverse density distribution is 
irrelevant and does not affect the stability. However, the 
complete integrability is valid only for the center particles 
in the weak bunch, and synchrotron oscillations introduce 
modulation that disturbs the system. Also, the longitudinal 
distribution in a typical collider is Gaussian. Numerous 
numerical simulations have been performed to explore the 
stability of the round colliding beam systems to these 
imperfections (see e.g. [6, 7]). More importantly, the 
experimental implementation of the concept at the VEPP-
2000 collider (BINP, Novosibirsk), where the record-high 
value of ξ=0.25 was achieved (at σz/β*≈1), demonstrated 
its viability [8, 9]. 

This, and the recent progress in the development of 
nonlinear integrable systems [10] motivated us to re-visit 
the question of optimization of a round colliding beam 
system with the goal to achieve even higher beam-beam 
parameters. We use the Lifetrac weak-strong particle 
tracking code [11] to perform numerical simulations, and 
characterize the tracking data with the Frequency Map 
Analysis [12, 13].  ____________________________________________  
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SIMULATION MODEL 
The layout of the test lattice used in simulations is 

presented in Fig. 1. The machine consists of two main 
elements: a) a linear arc cell with axially symmetric 
focusing and phase advance of π×n (n is integer) in both 
planes; b) interaction region (IR), which is a drift space 
with length L and phase advance 2πQ0. The horizontal 
and vertical beta-functions in the IR are equal, with the 
minimum at the center of the drift. The well known 
relation between the phase advance and beta-function in a 
drift determines the value of the beta-function minimum 
β*: πQ0=atan(L/2β*). The purpose of the arc cell is to 
match the beginning and the end of the IR lattice 
functions, otherwise being transparent – we consider 
dispersion and focusing chromaticity to be zero 
everywhere. 

 

Figure 1: Schematic of the model lattice. Beta-function 
(black trace), ideal bunch density λ=1/β (blue) and 
Gaussian density with σz=√2 β* (red) as a function of 
azimuth. Q0=0.3. Bunch length for the ideal case is 2×L 
due to the counter-propagation of two beams. 

Note that a significant difference between this model 
and the system proposed in [5] is that the betatron tune 
working point does not need to be close to integer or half-
integer. Indeed, the betatron tune is n/2+Q0, and Q0 is 
determined by the ratio of β* and L. 

Next, we track a number of test particles with different 
initial conditions through the lattice with beam-beam 
interaction, and plot the tune variation along the trajectory 
as a color chart either in tune space (footprint) or in 
betatron amplitude space. The regions with significant 
tune variation represent either resonances or the chaotic 
motion. 

RESULTS 
For the synchronous particle in a weak bunch, in the 

case of ideal bunch density the system has two integrals 
of motion and the motion is infinitely stable for any value 
of beam-beam parameter. Figure 2 shows the tune 
footprint for ξ=1 (throughout this report the focusing 
beam-beam interaction with Gaussian transverse profile is 
used). The limited number of longitudinal slices of beam-

beam interaction explains the existence of resonance 
lines. The motion also remains stable for ξ=5, 10. 

 

Figure 2: Tune footprint for the case of ideal bunch 
density λ=1/β, Q0=0.3, and zero synchrotron amplitude. 
Beam-beam parameter ξ=1. Particles with betatron 
amplitudes up to 20 σ. The color represents tune jitter 
according to the scale on the right (log scale). 

For the case of Gaussian longitudinal density, the 
integrability is lost and one can see the strong overlapping 
of resonances at ξ=1 (Fig. 3) but still no significant 
resonances at ξ=0.5 (Fig. 4). Note that in either case the 
large amplitude motion is stable, which could allow using 
such systems for purposes other than colliders, for 
example to create large betatron tune spread.  

 

Figure 3: FMA plots for the case of Gaussian bunch 
density σz=√2 β*, Q0=0.3, ξ=1, and zero synchrotron 
amplitude. Particles with betatron amplitudes up to 20 σ. 
Tune footprint (left), FMA in amplitude space (right). 

 

Figure 4: FMA for Gaussian bunch density σz=√2 β*, 
Q0=0.3, and zero synchrotron amplitude. ξ=0.5. 
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In the simulations for particles with non-zero 
synchrotron amplitude, we investigated the effect of the 
bunch length ratio for weak and strong bunch, and of the 
synchrotron tune. The variation of synchrotron tune does 
change the resonance configuration, emphasizing some 
betatron amplitudes more than the others, but does not 
reduce resonances in a large enough area. As one could 
expect, the shortening of weak bunch length has a 
profound effect on the system stability. Simulations 
suggest that beam-beam parameter of 0.5 could be 
sustained for the bunch length ratio of about 1/10 (Fig. 5). 

 

Figure 5: FMA for Gaussian bunch density σz=√2 β*, 
Q0=0.3, ξ=0.5. Synchrotron amplitude 0.1 σz. 

The results of multi-particle simulations for the VEPP-
2000 lattice, taking into account the dynamic beta-
function and emittance, synchrotron radiation damping 
and quantum excitation, are not very encouraging. We 
observe a reduction of the luminosity with the increase of 
σz/β* ratio exceeding that expected from the hour-glass 
effect.  

CONCLUSION 
We confirmed that in a specially designed accelerator 

lattice, and by a careful shaping of the longitudinal profile 
of strong bunch, the value of beam-beam parameter 
exceeding one could be achieved for particles with zero 
synchrotron amplitude. The approach described in this 
report is advantageous with respect to the previously 
considered schemes because the machine betatron tune 
does not need to be close to integer or half-integer. This 
makes the scheme less sensitive to imperfections of the 
accelerator lattice. 

For particles with non-zero synchrotron amplitude, the 
integrability is lost but their motion remains stable even at 
large amplitudes, although a significant emittance growth 
is induced by the overlapping resonances. Simulations 
predict that a scheme with the bunch length ratio between 
the weak and the strong bunch of about 1/10 may be 
feasible, which could be useful for asymmetric machines 
such as the electron-ion colliders. 

A more rigorous study of the feasibility of the scheme 
in a real accelerator is in progress. 
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