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Abstract

Recently, a concept of nonlinear accelerator lattices with

two analytic invariants has been proposed [1]. Based on

further studies [2], the Integrable Optics Test Accelerator

(IOTA) was designed and is being constructed at FNAL.

Despite the clarity and transparency of the proposed idea,

the detailed analysis of the beam motion remains quite

complicated and should be understood better even for the

case when no perturbations are taken into account. In this

paper we will review one of the three proposed realizations

of integrable optics, where the variables separation is pos-

sible in polar coordinates. This system allows for an ex-

act analytical solution expressed in terms of elliptic inte-

grals and Jacobi elliptic functions [3]. It gives the possibil-

ity to check numerical algorithms used for tracking and to

perform more rigorous analysis of the motion in compari-

son with the ”crude” analysis of the topology of the phase

space. In addition we will discuss some difficulties asso-

ciated with numerical simulations of such a comparatively

complex dynamical system and will take a look at the pos-

sible perturbations for a model machine.

INTRODUCTION

Below we will consider the design of the accelerator

lattice which includes nonlinear lens, while the transverse

motion remains integrable. Several such systems possess-

ing a second invariant of motion, which is quadratic in mo-

mentum, have been proposed in [1]. One of the possible

realization is based on the application of a point-like mag-

netic quadrupole inserted into the center of a vacuum pipe.

In this case, the motion allows the variables separation in

polar coordinates and its analytical solution was described

in [3]. Here, we will focus on the implementation of this

idea and will design a model accelerator ring. For more

details on dynamics in such a magnetic field one should

consult the list of references.

ACCELERATOR LATTICE DESIGN

The particle dynamics in the magnetic field of point-like

magnetic quadrupole is unusual in that there is no equi-

librium orbit of motion; trapped particles are only in dy-

namical equilibrium, i.e. in constant motion in at least one

degree of freedom. This feature is related to the presence

of singularity at the origin. On the other hand, it means

that under the action of friction force, let say caused by the
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synchrotron radiation, particles will fall towards the singu-

larity and eventually will be lost on the inner aperture of the

vacuum pipe, ρin. Thus, below we will consider the design

of an accelerator ring for protons, so far as the damping of

oscillations due to radiation effects is negligible for them.

Axially Symmetric Focusing

As it was described in [1], the concept of nonlinear inte-

grable optics under consideration requires an axially sym-

metric focusing in the accelerator ring. A super-period of

such a lattice can be realized as F
2

O F
2

lattice, with a drift

space of length L, where the nonlinear lens is located, and

an optics insert (also so-called T-insert), which is equiva-

lent to a thin axially symmetric lens with the focal length

equal to 1/k (see Fig. 1).
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Figure 1: Schematic layout of the IOTA ring.

To study the transverse motion of the monochromatic

beam the principal realization of the optics insert is not es-

sential, and for all further simulations we will use a param-

eters designed for IOTA ring [2]. The dependence of the

minimum and maximum of beta function in the drift space

as well as betatron frequency as a function of the T-insert

strength are show in Fig. 2. Main parameters of the ring are

listed in Table 1.
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Figure 2: Minimum and maximum of beta-function (a.)

and betatron frequency (b.) as a function of axially sym-

metric lens strength parameter, k.
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Table 1: IOTA ring parameters used in simulations and op-

timized for compatibility with nonlinear lens under consid-

eration

Linear Lattice Parameters

# of super-periods 4

# of nonlinear lenses 2

Circumference, Π (m) 38.7

Bending dipole field, B (T) 0.7

Drift space length, L (cm) 200

T-insert strength parameter, k (cm−1) ∈ (0; 0.02)

Beam at the Injection

Beam kinetic energy, Ekin (MeV) 1.91

Beam momentum, Peq (MeV/c) 60

Normalized emittance, ǫ⊥norm (cm rad) 2× 10−5

Nonlinear Lens

The design of nonlinear lenses, corresponding to inte-

grable potentials proposed at [1], brings in two major in-

evitable perturbations. They are associated with the special

longitudinal dependence of the field, and, the physical real-

ization of poles of the lens. The first condition is automat-

ically satisfied due to invariance of the potential under the

transformation to normalized coordinates and time, except

the effect from the fringe fields. While the second one can

not be realized without introducing the perturbation, since

poles can not be placed at the same point in the space.

Point-like magnetic quadrupole can be approximated

with four wires of diameter D, which are spaced very

closely to each other at the vertices of a square, ~Rα, and

numbered counter-clockwise from the corner located at
~R1 = (b, 0) (see Fig. 3). “Dot” and “cross” symbols in

the figure show the current direction: coming out and into

the page (along the beam direction) respectively. In or-

der to keep particles which are performing the libration

(0 < W < A), the vacuum chamber can be made of two

nested half-cylinders of radii ρin,out, forming a c-shape.

Rα

Ια
ρ

I    = −I    = I1,3 2,4

R    = (  b,0)1,3

R    = (0,  b)2,4

α αR   =    − Rρ
D/2

b
O

O’

ρ in

inner wall
of vacuum
chamber

Figure 3: Schematic plot of the nonlinear lens geometry

along with inner part of vacuum pipe. Points O and O’

represents the origin of coordinates and the point inside the

vacuum chamber where the field induced by the lens should

be considered, ~ρ = OO′.

Indeed, in ordinary polar coordinates

ρ =
√
x2 + z2, θ = arctan(z/x),

the longitudinal component of the magnetic vector poten-

tial A = (0, As, 0) created by such a quadrupole structure

can be easily calculated and expressed as a multipole series

As = −µ0

2π

∑

α=1,2,3,4

Iα ln |R̃α|

=
µ0I

π

∞∑

n=0

(
b

ρ

)2+4n
cos[(2 + 4n)θ]

1 + 2n

=
µ0I

π

(
b2
cos 2θ

ρ2
+

b6

3

cos 6θ

ρ6
+O

[(
b

ρ

)10
])

,

where µ0 is a vacuum permeability. As one can see that

first perturbing term corresponds to the dodecapole field

which is significantly suppressed by 4 orders of magnitude

in a smallness parameter (b/ρ). It shows that the drawing

apart of wires does not create a strong perturbation since

all additional terms are rapidly decay with the growth of ρ.

The nonlinear potential in the Hamiltonian is related to As

as

V (ρ, θ) =
U(r, θ)

β(s)
=

A sin(2θ + ϕ)

ρ2
= −eAs

Peq

,

which gives the expression for the field amplitude:

A =
µ0eIb

2

πPeq

.

Due to a presence of the physical aperture, the following

inequality should be satisfied

ρ4in
β2(L/2)

< A <
ρ4out

β2(L)
, (1)

in order to have a suitable admittance. Among the trans-

verse geometrical parameters of the lens there is only one

independent since we want to pack all wires as tightly

as we can. Thus for a given current density in a wire,

ρI = 4I/πD2, the optimization of A becomes a problem

of a single parameter variation. For example, the value of

the diameter of a wire allows to approximate the wire dis-

placement and the inner radius of vacuum pipe as

b ≈ D/
√
2, ρin ≈ (1 +

√
2)D/2.

Possible choice of A is presented in Fig. 4.

For simulations we considered 2 possible scenarios: lens

with water cooling and the superconducting one. Parame-

ters for both cases are listed in a Table 2. It is worth noting

that the use of high current is limited from technical limita-

tions, while the use of low current lens leads to the shrink

of admittance, which can be compensated by decreasing

the energy of a beam.

In order to study the monochromatic beam motion in a

lattice with perturbations, we decided to use the Poincaré
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Figure 5: (a.1,2) and (b.1,2) show Poincaré surfaces of section for [r = r0, pr = 0] and [θ, pθ = 0] respectively at the

middle of nonlinear lens. Beam motion is simulated with nonlinear kick defined by 4 wires moved apart from each other.

Linear lattice parameters are calculated for betatron frequency νx,z = 0.44. Parameters of nonlinear lens are chosen in

accordance to Fig. 4. Plots show presence of different types of cross sections in a phase space: (a,b.1) — strongly chaotic

and (a,b.2) — close to integrable.
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Figure 4: (a.) Nonlinear lens strength, A, dependence of the

wire diameter, D, for a given values of the current density

in logarithmic scale (ρI = 10 A/mm2 requires water cool-

ing of wires, while in order to keep ρI = 100 A/mm2 lens

should be superconducting). Blue dashed lines represent

condition given by inequality from Eq. (1). Orange circle

shows possible choice of A for superconducting scenario.

(b.) Example of the distribution of angular frequencies in

the beam filling the admittance, which determined by the

choice on left figure.

surfaces of section in a phase space. A numerical example,

when the perturbation of integrable optics caused by the

moving apart wires in superconducting nonlinear lens, is

presented in Fig. 5.
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