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Abstract

In the present analysis we study the weakly nonlin-
ear interaction between trains of electromagnetic pulses
and space-charge fields in laser-plasma systems. We di-
rect the analysis to regimes evolving with the co-moving
coordinate of the beam frame, but do not make any as-
sumptions on paraxial or underdense approximate condi-
tions. The model thus constructed allows us to investigate
regimes where transverse and longitudinal length scales
of the pulses are comparable. Resonant and nonresonant
regimes of space-charge wave excitation are analyzed. In
both cases, with aid of analytical estimates and numerical
simulations, we examine how far trains of electromagnetic
pulses can travel before being affected by the destructive
transverse effects.

INTRODUCTION
The propagation of localized radiation pulses in plasmas

has been the subject of continuous interest in a variety of
areas, including nonlinear wave excitation [1, 2] and parti-
cle acceleration [3, 4, 5]. Pulses are formed as large ampli-
tude electromagnetic waves undergo the process of modu-
lational instability in the plasma, breaking up into a series
of narrow quasi-isolated structures. This is a typical be-
havior in soliton turbulence [6] and in self modulated laser
accelerators, once an option in laser acceleration, whose
interest has been reignited recently [7].

Pioneering works [8, 9] have studied the self-consistent
problem of electromagnetic pulses propagating in plasmas
and the space-charge waves generated by this propagation
in one dimensional models. These models, however, usu-
ally refers to nonparaxial solutions (where dependence of
the field on transverse coordinates is completely neglected)
or the opposite, the paraxial limit (where transverse ef-
fects dominate the dynamics). In several occasions, a laser
beam reaches operational conditions where longitudinal
and transverse sizes become similar in magnitude [10, 11].
Under these conditions, an accurate account of the dynam-
ics should treat transverse and longitudinal effects on the
same footing.

The objective of the present work is to perform an anal-
ysis of the nonlinear interaction of electromagnetic and
space-charge without invoking 1D, paraxial, or approxi-
mate nonparaxial approaches [12, 13]. Our main interest
will be to determine how the the transverse structure af-
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fects a train of solitons, typically formed after an initially
injected pulse breaks up through self-modulation [14].

THE MODEL
We can model this system with the following coupled

equations for the laser field a and for the space-charge po-
tential φ ≡ v2gn− a2/2,

κ
∂2a

∂ξ2
= δa+

1

v2g
φa+

κ

2v2g
a3 −∇2

⊥a, (1)

∂2φ

∂ξ2
+

1

v2g
φ = − 1

2v2g
a2 +

1

2
∇2

⊥a
2, (2)

derived in details in our previous work [15]. If the trans-
verse structure is neglected, this set becomes similar to
models analyzed in the past [9] and one can think of it as
describing the coupled nonlinear dynamics of fields a and
φ as a function of the co-moving coordinate ξ, which plays
the role of time. With the transverse structure included,
it describes the weakly nonlinear, spatio-temporal interac-
tion of laser and space-charge field. Coordinate ξ can still
be seen as time, and space is associated with the transverse
structure itself. These Eqs. are solved numerically with the
following initial conditions

a(0, x⊥) = a0 e
−λx2

⊥ , ∂a/∂ξ|ξ=0 = 0 (3)

φ(0, x⊥) = −a(0, x⊥)
2/2 , ∂φ/∂ξ|ξ=0 = 0 (4)

EVOLUTION OF THE TRAIN OF PULSES.
Examining Eqs. (1) and (2) together with the initial con-

ditions we find that (δ/κ)−1/2 is the time scale for pulse
formation along the propagation axis, (λ/κ)−1/2 is the
time scale for transverse effects. When λ ≪ δ, pulses
are formed before being affected by transversal effects, and
when the inequality reverses, one recognizes the typical in-
stability associated with the transverse term, shown in a re-
cent work to be of the form a ∼ eλξ

2/κ [15]. Depending on
the relative magnitude of the parameters δ and λ one thus
may or may not observe pulses in the system.

In order to see how the electromagnetic pulses evolve as
they move into the plasma, we will split the analysis into
nonresonant and resonant regimes. Nonresonant regimes
are the ones where the adiabatic approximation would re-
main valid throughout the entire dynamics, if the transverse
derivatives were turned off. Resonant regimes, on the other
hand, are the ones where adiabaticity is broken and proper
plasma waves are excited, even in the absence of the trans-
verse structure.
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Nonresonant Regimes
Nonresonant cases are those where the time scale for the

dynamics is much longer than the plasma time scale scale.
In our dimensionless system, this means that 1/v2g is suffi-
ciently large that the the corresponding terms in Eq. (2) are
much larger than the term with the ξ-derivative. In this case
φ = −a2/2 and one says that the φ field becomes enslaved
to the field a, which allows to use Eq. (1) as a closed, gov-
erning equation (with transverse derivatives turned off) for
field a in the adiabatic regime:

κ
∂2a

∂ξ2
= δa− a3

2
. (5)

As Eq. (5) describes a nonlinear oscillator with stable equi-
libria at a = ±

√
2 δ, each transverse coordinate x⊥ the

laser oscillates with a different, local nonlinear frequency
Ω = Ω(x⊥). When the transverse derivatives are turned
on, it is only a matter of the time ξ until the gradient of the
phase Ω(x⊥) ξ along x⊥ monotonically grows to any de-
sired value. As one turns the transverse term on, even if ini-
tially small, the associated transverse derivatives will even-
tually grow and affect the dynamics. In the nonresonant
case we are investigating, a quick estimate can be made
on the value of ξ where the transverse term is expected
to become comparable with the terms already present in
Eq. (5). We first observe that for noise-like initial condi-
tions, the right-hand-side of the energy conserving Eq. (5)
keeps oscillating within the region R bounded by the limits
−2δ3/2 ≤ R ≤ 2δ3/2(2/27)1/2. To obtain the estimate,
we simply integrate Eq. (5) for all x⊥’s using the initial
profile provided by Eq. (3), calculate ∇2

⊥a with basis on
the solution for a yielded by the very same Eq. (5), and
take note of the earliest time where ∇2

⊥a cross the bound-
aries of R.

Figure 1 displays the corresponding behavior. Once
again we choose δ = 10−2, along with v2g = 0.2 and
λ = 10−3. The upper and lower straight lines represent
the boundaries of R and we can see how the magnitude
of ∇2

⊥a grows in time. At ξ ∼ 35 the transverse Lapla-
cian reaches the boundaries of R at λ1/2x⊥ ∼ 1, and at
this time one can expect to see the effects of the transverse
derivatives on the pulse dynamics.

Let us then integrate the full space-time system formed
by Eqs. (1) and (2) to make comparisons with the estimates
in some instances. Results are displayed in Fig. 2.

Panel (a) of Fig. 2 represents the case with the transverse
term turned off. We repeat the parameters used in Fig. 1:
δ = 10−2, v2g = 0.2 and λ = 10−3. For the given initial
conditions (3) and (4), the tridimensional plot displays the
regular behavior of the corresponding nonlinear pulses. At
each x⊥ the laser oscillates, but with a steady phase slip-
page rate existing along this transverse axis. This is why
one observes curved wave fronts as ξ grows.

Keeping the parameters of panel (a), in panel (b) of the
same Fig. 2 the transverse term is turned on. We see that
the train of pulses starts to develop sharp spikes before
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Figure 1: Magnitude of the transverse Laplacian as a func-
tion of x⊥ and ξ. At ξ = 35 the Laplacian touches the
boundary of region R, which signals the instant where its
corresponding effects become noticeable.

Figure 2: Space-time dynamics of the laser field in the
nonresonant regime. In all cases we take δ = 10−2 and
v2g = 0.2. In panel (a) we consider λ = 10−3 but keep
the transverse Laplacian switched off. In the remaining
panels the Laplacian is turned on with λ = 10−3 in (b),
λ = 2.5× 10−4 in (c), and λ = 10−1 in (d).

ξ = 50, which agrees with the previous estimates. The
spikes arise from the action of the second derivatives along
x⊥, as can be seen again from Fig. 1, and shortly after-
wards the space-time dynamics merges into a chaotic pat-
tern. The chaotic pattern cannot be followed for long due
to the fact that, in that stage, the fields grow to values be-
yond our weakly nonlinear approximation. However, the
important information to be gathered here is on how far
solitary pulses behave as such, before being affected by the
transversal effects.

For sake of comparison, in panel (c) we also examine
what happens when the initial beam width is extended, with
a smaller λ given by λ = 2.5×10−4 (remaining parameters
are kept with the same previous values). In that case our es-
timate indicates that, as expected, the transverse term takes
longer to affect the pulse dynamics. The critical time ξ,
once again obtained as the one where ∇2

⊥a escapes region
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R, reads ξ ∼ 70, which agrees with the curves displayed
in the present Fig. 2 (c). The case with large values of λ,
say λ = 10−1 (≫ δ), is also worthy of inspection, as done
in Fig. 2(d). In this case the transverse term dominates the
dynamics, generating the exponential growth commented
earlier [15]. As a matter of fact, in this latter case of large
λ, the maximum of ∇2

⊥a, here located at x⊥ = 0, already
starts off from a value beyond the boundaries of R.

Resonant Regimes
Since with transverse derivatives neglected the system

already displays a nonintegrable behavior in the resonant
regime, the quasi-integrable estimates based on the reduced
- and integrable - equation (5) becomes inaccurate. How-
ever, one can still be tempted to associate the time scale
(δ/κ)−1/2 with the longitudinal dynamics, and the time
scale (λ/κ)−1/2 with the transverse term, as discussed pre-
viously. In panel (a) of Fig. 3 we take v2g = 0.9 and
δ = 10−2, along with λ = 10−4. Here λ is much smaller
than the mismatch δ and we are therefore under circum-
stances where pulses have time enough to be formed, even
if in an irregular fashion. This is essentially what happens,
as can be appreciated from the figure. In panel (b) we ana-
lyze the dynamics with the same set of control parameters,
but with the transverse term switched off. A comparison
between both panels allows us to realize that the presence
of the transverse structure, even for λ as small as λ = 10−4,
already has a relatively noticeable effect on the dynamics
of the laser amplitude a. In fact, the transverse term short-
ens somewhat the characteristic oscillatory time scale, what
is expected from the larger transverse gradients associated
with a chaotic case. The shortening of the time scales be-
comes gradually more pronounced as λ grows.

Figure 3: Space-time dynamics of the laser field in the res-
onant regime. In panel (a) we take δ = 10−2 and v2g = 0.9,
along with λ = 10−4. Panel (b) is plotted for the same
parameters, but with the transverse term switched off.

CONCLUSIONS
Space-charge waves are excited as the pulses travels into

the plasma. Both resonant and nonresonant cases of space-
charge plasma wave excitation were examined. In the non-
resonant regime, accurate estimate of the transverse effects
is possible. One can, for instance, predict, with relatively
narrow margins of error, how far does a soliton train move
into a plasma before being distorted.

In resonant cases estimates become less accurate due
to the nonintegrability of the overall dynamics, but one

can still produce reliable predictions on the wave pat-
tern. In the case specifically studied here, the transverse
scale (λ/κ)−1/2 is sufficiently larger than the pulse length
(δ/κ)−1/2 and localized structures can be observed before
being affected by the transversal effects.

In general, the number of unperturbed pulses in a train
can be roughly estimated as (δ/λ)1/2. Since the amplitude
ap of the pulses is proportional to δ1/2, one sees that the
number of pulses in a train can be rewritten as ap λ

−1/2.
The factor λ−1/2 itself is the transverse length measured in
units of the plasma wavelength. If the laser beam is wide
with λ−1/2 ≫ 1 the number of pulses can still be appre-
ciable even with ap small. This is the case of a beam width
50µm and plasma wavelength 0.5µm, which matches one
of the cases studied in the text, where λ = 10−4. In ex-
treme cases where λ−1/2 ∼ 1, only strong lasers can form
pulses; otherwise, no pulses are formed as in the cases with
λ ∼ 10−1 also investigated in the work.

The present analysis essentially adds transverse effects
to the known one-dimensional behavior of train of planar
pulses. As an overall conclusion, we see that transversal
effects become already important even when the cross sec-
tion of the radiation beam is relatively larger than the lon-
gitudinal pulse size.
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