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Abstract

An axially modulated plasma waveguide supports slow-

wave laser modes suitable for direct laser acceleration. The

channel studied here supports a gradient of 2 GeV/m driven

by a 1 TW laser. The transverse beam dynamics are an-

alyzed in the context of the envelope equation and simu-

lated by particle tracing to demonstrate the feasibility of

using a photogun as the electron source. External injec-

tion promises to take advantage of the precision offered by

state-of-the-art RF photogun technology to increase shot-

to-shot reproducibility.

INTRODUCTION

The acceleration of electrons directly by laser fields is an

attractive design for a compact accelerator because of the

large gradients lasers can provide. In particular, direct laser

acceleration (DLA) requires less power than laser plasma

wakefield acceleration (LWFA), which enables more com-

pact designs. In order to take advantage of the high fields

of the laser it is necessary to overcome the restrictions due

to phase slippage implied by the Lawson-Woodward theo-

rem [1]. The DLA scheme pursued here overcomes these

limitations by guiding a high intensity pulse through a cor-

rugated plasma channel [2]. Analogous to a conventional

disk-loaded LINAC, the corrugations introduce slow wave

components phase matched to the electron beam.

Corrugated plasma channels have been created in a laser-

ionized plasma [3]. Gas clusters were ionized and then

heated by a 100ps pulse focused to a line by an axi-

con. The corrugations considered for quasi-phase matching

were created by using a ring diffraction grating to introduce

radial modulations in the laser pulse. The axicon maps the

radial intensity pattern to the axis, and uneven heating of

the plasma leads to density modulations during the shock-

wave expansion. The use of the heater pulse to shape the

modulations offers control over the modulation parameters.

Here we propose fixing the modulation parameters to

provide focusing for an emittance dominated beam. The

transverse beam dynamics in an ideal channel are studied

in the context of the envelope equation. A matched solution

with asymptotically damped oscillations is calculated. The

input beam to match the channel can be obtained from an

RF photogun. This solution bypasses the problems LWFA

experiments have faced with injecting bunches from the

plasma into the accelerating field.

ANALYSIS

Following previous analysis [4], the density profile of the

plasma channel used for Direct Laser Acceleration experi-
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Table 1: Channel Parameters
n0 km δ wch λ0 a0
5 · 1019/cm3 232200 .9 37 µm 800nm .2

ment can be approximately described as Eq.(1), with addi-

tion of a density ramp, ns(z) to be used for phase-matching

throughout the accelerator [5].

n(z) = n0 [1 + δ sin (kmz)] + n
′′

0 r
2/2 + ns(z) (1)

The parabolic density channel supports TM guided modes

of radially polarized waves. The lowest order solution is

expanded into slow-wave components and the transverse

forces due to the resonant and non-resonant components

are studied and used as the basis for an envelope calcula-

tion. Channel parameters used throughout the paper are

listed in table 1 and are chosen to be consistent with exper-

iment [3]. The channel is taken to be 1.8cm long so that the

length of the accelerating pulse does not limit acceleration

[4]. A laser power of a0 = .20 is chosen to correspond with

the TW laser in construction at UCLA’s Pegasus beamline.

Guided Modes

Since we want a longitudinal field component for accel-

eration, we seek the radially polarized component of the

laser vector potential in the slowly varying envelope ap-

proximation: A⊥ = Âre
i(k0z−ω0t), with Âr satisfying:

[

2ik0

(

∂

∂z
+

1

c

∂

∂t

)

+∇2
⊥

]

Âr =
ω2
p

c2
Âr

where ω2
p = ne2

mǫ0
. This can be solved using separation of

variables and expanded into harmonics using the Jacobi-

Anger expansion. Palastro [4] includes discussions of the

assumptions behind this model. Ignoring time dependence

in the laser envelope, the lowest order solution is written in

the Columb gauge as:

Âr = A0
r

wch
e

−r2

w2

ch

+∞
∑

q=−∞

iqJq(Ψ)e
i

(

−Ψ+(δk+qkm)z−

∫

k2
psdz

2k0

)

(2)

where:

• wch =

(

8c2

ω
′′2

p0

)1/4

• δk = − 1
k0

(

ωp0

2c2 + 4
w2

ch

)

• k2ps(z) =
e2ns(z)
mǫ0c2

• Ψ =
δωp0

2c2k0km

The transverse potential peaks at r = wch/
√
2. For our

parameters Ψ ≈ .5 is small, so that the Bessel functions

limit the relevant terms in Eq(2) to small q.
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The axial component of the potential is given by ~∇ ·
~E = 0 ⇒ ~∇ · ~A = 0. The magnetic field is given by
~B = ∇ × ~A and the electric field by ~E = − ∂

∂t
~A. The

phase velocity of an individual harmonic is calculated by

taking the derivative of the exponent of Eq.(2). The op-

tical scale dominates
(

k0 >> δk, nkm,
∫

k2psdz/k0
)

such

that phase matched particles would have acceleration given

by γ = γ0 + γ′z. This determines vp and allows phase

matching of the largest subluminal harmonic (q=1) by us-

ing a density ramp. The density ramp asymptotically ap-

proaches mǫ0c
2

e2 (2k0(δk + qkm)) from below and rises

slowly compared to both the optical and modulation pe-

riods, but quickly compared to the length of the plasma

channel. The condition to keep the total density positive is:

km >
e2

mǫ0c22k0
δn0 +

4

k0w2
ch

− k0

(

1− 1
√

1− 1/γ20

)

For the small values of ψ under consideration we have the

relation Ez ∝ a0n0δ/kmwch. This scaling helps deter-

mine acceptable values for the parameters used.

Transverse Force

The equations of motion for a particle in the channel de-

scribed above are:

ẍi =
e

meγ
Re[

+∞
∑

q=−∞

fi,qe
i(n−1)kmvpt] + c.c.

where, for r << wch

fz,q =
mecω0a0
eKq

1

wch
Jq(Ψ)eiφ+ikmξ(q−1)+i(π

2
(q)−Ψ)

fr,q = fz,qKqr

[

1− βz
βq

(

1 +
8

(Kqwch)2

)]

ei
3π
2

where Kq =
(

k0 + δk + qkm + k2ps/2k0
)

, ξ ≈ z − vpt,
and φ is the phase. Since ξ and φ are constant due to the

phase matching condition the f vary in time minimally, only

through theKq’s dependence on ns(z(t)). The 8
(Kqwch)2

is

due to the finite spot size of the laser.

Following the notation of [6] the motion is separated

into a slowly varying secular motion and a fast (corruga-

tion scale) motion. In solving for the rapid motion we have

used k0 >> δk, qkm, κ(z) and neglected terms κ(z)/k0.

Averaging over the fast motion yields the secular equation

of motion:

R′′(z) =
−1

β2γ

ω0a0
c

R

wch
J1(Ψ)

(

8

(Knwch)2

)

eiφ+i(π−Ψ)

(3)

+
a20

w2
ch(n− 1)2

(

K1

km

)2

R
∑

q 6=1

1

β2γ2
Jq(Ψ)2

(

− (q − 1)km
k0

− 8

(Kqwch)2

)2

+O
(

k0
kmγ2

)

+O (Jq(Ψ)J2−q(Ψ))

The term outside the sum is due to the resonsant force. The

terms in the sum are the ponderomotive force. For our pa-

rameters the terms in big O notation are small for γ >> 6
and q> 1. For γ >> 30 the resonant term dominates the

pondermotive force. To study the propagation of an elec-

tron beam through the channel we consider the envelope

equation in the emittiance dominated regime:

σ′′
r +

(βγ)′

βγ
σ′
r + k2rσr =

ǫ2nr
(βγ)2σ3

r

(4)

The pondermotive focusing term allows for a matched

beam envelope:

σm ≈
(

ǫnrwch√
2a0J0(Ψ)

)1/2

Because σ′
r(0) 6= 0 the pondermotive force will cause spot

size oscillations. In addition, the resonant term will add

overfocusing as γ increases. The asymptotic behavoir of

this system can be be easily interpreted as β → 1 by writing

σr(z) = σm + δ(z), where it is assumed δ(z) << σm.

Still approximating the particles’ phases as constant, and

changing variables to ẑ = γ0 + γ′z Eq.(4) becomes:

δ′′ +
δ′

ẑ
+

1

γ′2

(

k2res

ẑ
+

4k2pond

ẑ

)

= −k
2
resσm
γ′2ẑ

(5)

where k2res is the focusing due to the resonant harmonic,

k2pond is the focusing due to the pondermotive forces, and

primes denote derivatives with respect to ẑ. In the limit

where k2resγ >> k2pond the solution is a linear combina-

tion of J0(2kres

√
ẑ/γ′) and Y0(2kres

√
ẑ/γ′). For large z

this represents damped oscillations with a growing period.

When still in the regime β ≈ 1, but k2resγ ≈ k2pond the solu-

tion can be shown to be oscillations formed from a combi-

nation of Bessel and Hypergeometric functions.

Table 2: Beam Parameters
γ Espread ǫn σr Q

Initial 20 .2% 0.1 mm·mrad 2.6µm 1pC

Final 90 2.2% 0.3 mm·mrad 2.6µm .64pC

Particle Tracking

The particle tracking code General Particle Tracer (GPT)

was used to test the approximations made in determining

the envelope behavior. The tracing is only as accurate as

the input field, Eq.(2), as the tracer does not simulate the

plasma. For simplicity the laser is still assumed to be much

longer than the electron beam so that the overall pulse en-

velope can be ignored. The solver does calculate the small

contribution from spacecharge fields, but it does not ac-

count for wakefields in the plasma.

Beam parameters before and after acceleration are listed

in table 2. The input parameters are similar to those ob-

tained in UCLA’s Pegasus beamline, and the final param-

eters are for the accelerated electrons only. Further, the
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Figure 1: Energy spread of the accelerated bunch.

beam is assumed to have been previously microbunched

into 20 optical length bins, with each box having a FWHM

λ0/9, as might be created by bunching in an undulator [7].

During the first millimeter of acceleration many of the

particles far from the axis de-phase from the matched wave,

slip into the defocusing region of the resonant harmonic,

and are ejected from the channel. The remainder of the

particles are accelerated with a linear gradient to γ = 92.

A capture rate of as high as 64% was achieved by setting

the initial phase at π/6. Because of the dephasing, the

electrons fill the accelerating bucket and the final energy

spread (Fig.1) is nearly 5%. The energy spread and capture

rate are improved by reducing the dephasing. The capture

rate is little improved by reducing the emmittance, as the

dephasing is caused by betatron oscillations that are large

enough to modulate γ and dephase the outer electrons. This

effect would be reduced by increasing the channel width,

but at the cost of the accelerating gradient. A more com-

plex scheme may pursue a slowly changing channel width.

The envelope of a single bunch in the accelerated group

of electrons is graphed in Fig.2. The beam has an input

rms radius of 2.6µm, and then oscillates about the matched

spot size. The oscillation magnitude is damped and the pe-

riod is lengthening, consistent with the behavior predicted

by the asymptotic solution to the envelope equation. The

maximum spot size is 1/10 of the channel size, indicating

that the forces remain linear, yet the normalized emittance

triples. The increase in emittance is visually evident in the

evolution of the transverse phase space (Fig.3) as an in-

crease in the transverse momentum. Further increase in the

transverse momentum is limited by dephasing due to cou-

pling between the longitudinal and transverse momentum.

Particles at the edge of the phase space are slowly dephase

into the defocusing phase for arbitrarily large accelerators.

CONCLUSIONS

The transverse dynamics in an ideal corrugated waveg-

uide have been studied and found to yield focusing forces

suitable for matching a µm size beam. However, the large

focusing and over-focusing forces contribute to the dephas-

ing of electrons which leads to low capture rates, large en-

ergy spread, and emittance growth. Increasing the channel
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Figure 2: Envelope dynamics showing the spot size oscil-

lations of the accelerated bunch.
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Figure 3: The inital and final phase space of the acceler-

ated bunch. The growth in transverse momentum is due to

betatron oscillations.

width decreases these effects and a tapered channel width

may contribute to higher beam quality. Further analysis

of the accelerator would benefit from modeling the plasma

formation and beam-plasma interaction. Nonetheless, the

analysis here suggests it would be possible to channel an

externally injected beam in a proof of principle experiment.
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