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Abstract 
Modern tracking codes have very stringent 

requirements concerning space charge calculations. They 
should combine speed of calculations, in order to track 
particles for many turns (e.g. the LHC injection chain), 
with numerical accuracy while maintaining symplecticity. 
Grid solvers and modified Green's function algorithms 
have been compared, and upgrades were suggested.  

INTRODUCTION 
Multiple-particle tracking allows for accurate space 

charge (SC) beam simulations and design. However, in 
the particle-in-cell (PIC) formalism [1], spatial non-
physical grid effects may jeopardize the validity of 
modeling in accelerator rings and colliders, especially 
during multi-turn particle tracking. To remedy artificial 
grid noise, PIC codes increasingly use more macro-
particles, denser grids, and more SC kicks per bunch, 
requiring massive parallelization. Even so, numerical 
errors persist. The split operator method itself (unlike the 
general PIC paradigm) decouples three-dimensional (3D) 
SC forces and dynamics, possibly resulting in additional 
errors and faulty estimates of instabilities, dynamic 
aperture, emittance growth, etc. Recent numerical 
experiments demonstrated artificial noise due to mesh 
effects and interpolation, leading to micro-scale beam 
instability [2]. 

The situation can be improved in two ways. First, we 
perfect the components of the PIC formalism itself. We 
will develop a grid density module, suppressing numerical 
noise to upgrade the accuracy of Poisson solvers. 
Secondly, we avoid spatial grids entirely, because despite 
precautions the grid-related noise will always persist. The 
known grid-free SC solvers are based on the classic 
Green's function or direct Vlasov solvers (we are aware 
only of axi-symmetric ones) [3], but they are too slow for 
multiple particle tracking in rings and work only in free 
space without boundaries. Instead, we introduce hybrid 
SC solvers based on “space-charge templates”, which 
represent macro Green’s functions for macro-elements [4-
5], from which a large family of beam distributions can be 
built. These SC templates calculate the 3D self-forces of a 
beam in the presence of conducting boundaries. 

There is a gap in terms of generality and performance 
between fast but over-simplified “frozen” models and 
standard PIC codes. The proposed hybrid SC solvers fill 
that gap: they are more flexible than “frozen” models and 
approach the accuracy of PICs while being much faster. 
Template-based solvers can simulate rather arbitrary beam 
distributions within conducting boundaries and may be 
parallelized, boosting their performance even further. 

ACCURACY OF MULTIPLE-PARTICLE 
TRACKING BY PICS 

The computational flows of multiple-particle tracking 
codes are similar, and our analyses of the accuracy and 
performance of their components have much in common. 

PIC Computational Modules  
Each macro-particle in a 3D beam has six phase space 

coordinates, and a step-by-step evolution of the ensemble 
of N macro-particles X=(x1, x'1, y1, y'1, z1, z'1,�, xN, x'N, 
yN, y'N, zN, z'N) looks like the following: 
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Here the trajectories are integrated either by multi-step 
(2nd order leap-frog, or higher order) schemes, or 
symplectic maps, which are more customary for multi-
turn modeling in the rings. These higher order maps take 
into account non-linearities of the lattice and SC forces, 
and they trace particles with any prescribed accuracy in 
the framework of the single particle approximation [6].  

Contemporary Poisson solvers are able to derive nearly 
exact grid solutions by multi-grid techniques, assuming 
that the input, i.e. the grid density, is known exactly. The 
interpolation between grid nodes is also very accurate. 
Unfortunately, the grid density is evaluated only 
approximately, and moreover, it represents the main 
source of numerical noise in (1). We need to find 
remedies to manage this. 

Space Charge Density on the Grid  
The Cloud-In-Cell (CIC) technique was developed 

decades ago (see [1] and references therein). If a spatial 
grid has dimensions of Nx�Ny�Nz and meshes hx�hy�hz, 
then the macro-particle sizes are �x,y,z=�hx,y,z (�0.5). A 
redistribution of elementary space charge among grid 
nodes must satisfy a conservation of space charge and 
should converge for higher order interpolations. A linear 
scheme is used in ORBIT, WARP, and Synergia codes. A 
quadratic interpolation is also possible. 

Using finite clouds with bell-like shape functions is 
beyond linear/quadratic interpolation. One needs an 
infinite polynomial series to represent them. For example, 
Fig. 1 shows a family of one dimensional (1D) clouds: 
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Figure 1: Macroparticle clouds in CIC scheme. All clouds have 
different ramps, but carry the same space charge "q". 

As shown in [7], the integrals �k=�
�

a
Sk (�)d�  are: 
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and  so  on  for  �5,6(� ,a).  In our algorithm, the choice of 
the cloud may vary from the beam center to the edges. 
Figs. 2 illustrate SC density of 105 macro-particles within 
40cm×40cm boundary, Nx=Ny=128 and different sizes of 
macro-particles for the cloud S3(�). 

 

          

          

      
Figure 2: Contour plot (top), 3D space charge densities (middle) 
for =1, 4;  and corresponding fields Ex,y  (bottom) for =4.  

 
For =1 and 4, contour lines and 3D plots are very 

different (~15%). The potentials, as integrals of densities 
differ by < 0.01%. The field differences drop from 3% to 
less than 0.01% for =1 and 4 respectively [8]. 

SPACE CHARGE TEMPLATES 
 A concept of space charge templates was introduced in 

[5,9]. The templates are macro-elements reproducing an 
original beam; their fields are derived from the library of 
template fields via superposition. A family of beam 

distributions built by templates is rather general but 
always has elliptical cross-sections along "z". See Fig. 3. 

 

Figure 3: 3D beam bunches within a round cylindrical pipe of 4 
cm in diameter (not shown). An ellipsoid 1cm�1cm�10cm (left) 
and an arbitrary 3D beam (right). Both bunches are "sliced" 
longitudinally by templates. 

In earlier versions of space charge templates, the fields 
of a 3D beam were calculated, using a library of charged 
disks/slices with pre-assigned density distributions.  

A more universal way to model a composite structure of 
real charge distributions is to use template-rings [10,8]. 

The 3D potential in free space � is 
xxxxx ~/~)~()( �� ���� dutmp 
 . 

For the particular case of a round ring of the outer 
radius Rtmp  and the inner radius Rtmp-dR (dRtmp stands for 
the thickness) with constant surface density �tmp, the 
potential becomes: 

��
�

��
	 ����� 2222 )(2)( zdRRzRu tmptmptmptmp ��x   (2), 

leading  to  analytical formulae  for the longitudinal field 
on the axis [10]. We used this equation along with 
successive over-relaxation (SOR 3D) technique, which 
solves the Poisson equation with and without boundaries. 

For illustration, the potentials of a positively charged 
disk of R=0.01 m, a negatively charged disk of R=0.007 
m, a ring, as a superposition of these disks and a ring field 
are plotted in Fig. 4 (left). Template fields, representing a 
beam from right part of Fig. 3 are plotted in Fig. 4 (right). 

 

 
Figure 4: Potentials and a field of disks/ring in free space (left). 
Template potentials of a beam from right part of Fig. 3 (right). 

 
We benchmarked the results for a 3D 1cm�1cm�10cm 

ellipsoid, carrying a uniformly distributed space charge of 
Q=10  C, placed into a conducting pipe of 4 cm in -11

diameter. The results obtained for disk and for ring 
templates agreed very well. Figs. 5 shows the same 
potential and fields as in [11, p.407] at xoff=yoff=0, obtained 
by SOR 3D, for distributions from Figs. 3. For longer 
bunches with semiaxes 1cm�1cm�50cm, the field flattens 
in the middle and “ear-fields” appear at the edges. 
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Figure 5: Potentials and fields of 3D ellipsoids with 
1cm�1cm�10cm (top), and 1cm�1cm�50cm (bottom). 

Fig. 5 suggests that non-linear behavior of longitudinal 
field becomes very strong due to image forces (in free 
space, a uniformly charged 3D ellipsoid has linear fields). 

A Gaussian 3D beam of ellipsoidal shape in free space 
has an analytical form of Ex,y,z fields (the so-called 
“frozen” SC model). The presence of a boundary changes 
them dramatically, limiting their applicability in tracking 
codes. We refer especially to the longitudinal field Ez, 
which is most affected by image forces.  

     

      
Figure 6: Transverse rms profiles <x2>1/2(z), <y2>1/2(z) (left) and 
shape functions Sx,y(z), defining the template shell (right). 

The number of templates for accurate space charge 
calculations is a free parameter. For a beam depicted in 
Figs. 3, one needs 15-20 templates. "Thick" slices may 
also be helpful to deal with very long bunches. 

 

     
Figure 7: Disk templates (left), built from rings. Ring templates 
for the outer layer of beam bunch (right). 

 
For a real 3D bunch consisting of macro-particles, Figs. 

6 demonstrate the procedure to find shape functions 
Sx,y(z), determining the shell containing all templates, and 
Fig. 7 illustrates how ring templates reproduce the beam. 

Halo and Hollow Beams  
For high-brightness accelerators (HL-LHC, ESS), beam 

loss control is critical, and generally must obey "the 
1W/m rule" [12]. While losses may be less than 0.1%, the 
halo (from which most losses come) may contain a much 

larger fraction of a beam, and fields from halo particles 
can't be neglected.  Numerical noise from halo particles in 
a regular grid-based PIC may well be unacceptable. 

  
Figure 8: A transversal cross-section of an arbitrary “made-up” 
hollow beam with a halo, represented by a library of ring 
templates. An ideal Gaussian beam distribution is a dashed line. 

Ring templates are quite appropriate for halo as well as 
hollow beam field calculations, as shown in Fig. 8. 
Having disk templates, a special distribution like that 
would be difficult to reproduce. 

DISCUSSION 
The goal of this paper is to evaluate accuracies of SC 

tracking codes for rings, to develop a strategy to suppress 
artificial numerical effects, and ultimately, to improve 
code performance. The errors in SC fields will always 
persist due to granularity of space charge distribution, and 
inaccuracies of grid density calculations will dominate 
other errors: a grid Poisson solver and field interpolation 
and of course those of higher order tracking engines.  

A decrease of grid dimensions (larger meshes) damps 
density fluctuations. The same is valid for larger CIC 
clouds. However, these fluctuations may be physical, and 
such a brute force remedy simply eliminates them. A 
beam halo requires special treatment. 

The split operator paradigm is valid for very long 
bunches (a coasting beam approximation, as in PSR, 
SNS). For shorter bunches, a more accurate approach is 
required, based on templates and hybrid technique [5,8]. 
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