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Abstract
Picard iteration is mainly used as a theoretical tool to

establish the existence and uniqueness of a solution to an
initial value problem. We have developed a method based
on Picard iteration that computes the exact Taylor polyno-
mial of the solution to arbitrary order. The method has been
implemented in COSY INFINITY to numerically solve
Coulomb interactions.

INTRODUCTION AND BACKGROUND
Picard iteration generates a sequence of functions φn(t)

related to the solution of the initial value problem{
y′ = f(t,y)
y(t0) = y0

.

When f satisfies a local Lipschitz condition with re-
spect to y on U , a connected open subset of Rm+1 and
(t0,y0) ∈ U , the Picard iterates given by

φ0(t) = y0

φn(t) = y0 +

∫ t

t0

f (s, φn−1(s)) ds.

converge to a unique solution of the IVP up to the boundary
of U [1]. In general, φn may converge slowly to the exact
solution.

The Picard iteration based integrator described in this pa-
per has three main advantages. The the integrator has arbi-
trary order, is time adaptive, and has dense output. Dense
output refers to the integrator being able to take time steps
of variable length without having to recompute previous
steps. These advantages are intertwined to balance lo-
cal truncation error with computational efficiency. When
smaller time steps are required, the order can be reduced
to maintain efficiency. When a larger time step is appro-
priate, the order can be increased to maintain lower local
truncation error.

The advantages of the integrator make it well suited for
modelling the motion of charged particles. The forces in
Coulomb interactions are proportional to the inverse of the
square of the distances between particles. There are situa-
tions such as when two particles with same signed charges
are on a near collision course. If too large of a time step
is taken, the large repulsive force between the particles as
they move closer to one another may not be considered and
the integrator will give physically unrealistic results. An
integrator with dense output can avoid these errors.
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THEORY BEHIND THE INTEGRATOR
First, we will introduce notation to write Taylor poly-

nomials. When f has a Taylor series centered at a with
nonzero radius of convergence, define the operator T n

t,a act-
ing on function f to be the degree n Taylor polynomial
centered at a for f . That is

T n
t,a[f ] =

n∑
k=0

f (k)(a)
(t− a)k

k!
.

Main Theorem Statement
The main theorem below supplies two Picard iteration

based integrators with different compositions. From the
initial Taylor polynomial T 0

t,0[z(t)] = z0, we can find the
next Taylor polynomials using either recursive relationship
below. After each iteration, the local truncation error drops
by an order of magnitude. Algorithm 1 in the implemen-
tation and results section shows how to implement the first
composition.

Theorem 1. Let z ′(t) = f(t) and z0 = z(0). Suppose
z has a Taylor series centered at 0 with nonzero radius of
convergence R and t < R, then

T n
t,0[z(t)] = z0 +

∫ t

0

T n−1
s,0

[
f
(
T n−1
s,0 [z(s)]

)]
ds

= z0 +

∫ t

0

T n−1
s,0

[
T n−1
s,z0

[f ] ◦ T n−1
s,0 [z(s)]

]
ds.

In order to prove theorem 1, we need two lemmas. In or-
der to show the first lemma, we will need the Faà Di Bruno
formula [2], which is a generalization of the chain rule.

Theorem 2 (Faà Di Bruno). If g and f are functions with a
sufficient number of derivatives, then

dm

dtm
f(g(t)) =

∑ m!∏m
i=1 bi!

f (k)(g(t))

m∏
i=1

(
g(i)(t)

i!

)bi

where the sum is over all different solutions in nonnegative
integers b1, . . . , bm of b1 + 2b2 + · · · + mbm = m and
k ≡ b1 + b2 + · · ·+ bm.

Let Sm,k denote the nonnegative integer solutions of
b1 + 2b2 + · · ·+mbm = m and k ≡ b1 + b2 + · · · + bm,
and Tn,m,k denote the nonnegative integer solutions of
b1 + 2b2 + · · ·+ nbn = m and k ≡ b1 + b2 + · · ·+ bm.
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Lemma 1. Suppose g has a Taylor series centered at a and
f has a Taylor series centered at g(a) with nonzero radii of
convergence. Then,

T n
t,a[f ◦ g] = T n

t,a

[
T n
t,g(a)[f ] ◦ T n

t,a[g]
]
.

Proof T n
t,a

[
T n
t,g(a)[f ] ◦ T n

t,a[g]
]

will be directly evalu-
ated. The two things needed to start are

T n
t,a[g] =

n∑
k=0

g(k)(a)
(t− a)k

k!

and

T n
t,g(a)[f ] =

n∑
k=0

f (k)(g(a))
(t− g(a))k

k!
.

Plugging the first one into the second one, the following
can be done:

T n
t,g(a)[f ] ◦ T n

t,a[g] =

n∑
k=0

f (k)(g(a))
(T n

t,a[g]− g(a))k

k!

=

n∑
k=0

f (k)(g(a))

k!

(
n∑

i=0

g(i)(a)
(t− a)i

i!
− g(a)

)k

=

n∑
k=0

f (k)(g(a))

k!

(
n∑

i=1

g(i)(a)

i!
(t− a)i

)k

=

n∑
k=0

f (k)(g(a))

k!

∑
Tn,m,k

k!∏n
i=1 bi!

n∏
i=1

(
g(i)(a)

i!
(t− a)i

)bi

=

n∑
k=0

∑
Tn,m,k

f (k)(g(a))

k!

k!∏n
i=1 bi!

n∏
i=1

(
g(i)(a)

i!
(t− a)i

)bi

.

The fourth step is done using a combinatorial argument.
Think of each g(i)(a)

i! (t − a)i as a letter αi. What is being
counted by k!

b1! b2! b3!...bn! is the number of words with k
letters that have b1 letter α1’s, b2 letter α2’s, . . . , and bn
letter αn’s.

In Tn,m,k, m = b1 + 2b2 + · · · + nbn. It must be
that bi = 0 when i > m for i = 1, 2, · · · , n. In
T n
t,a

[
T n
t,g(a)[f ] ◦ T n

t,a[g]
]

each term has degree n or less,
so m ≤ n. In this case, Tn,m,k = Sm,k, and we have

T n
t,a

[
T n
t,g(a)[f ] ◦ T n

t,a[g]
]

=

n∑
k=0

∑
Sm,k

(t− a)m

m!

m!∏m
i=1 bi!

f (k)(g(a))

m∏
i=1

(
g(i)(a)

i!

)bi

=

n∑
m=0

(t− a)m

m!

∑
Sm,k

m!∏m
i=1 bi!

f (k)(g(a))

m∏
i=1

(
g(i)(a)

i!

)bi

=
n∑

m=0

(t− a)m

m!

dm

dtm
f(g(t))

= T n
t,a[f ◦ g].

�

Lemma 2. Suppose g has a Taylor series centered at a and
f has a Taylor series centered at g(a) with nonzero radii of
convergence. Then,

T n
t,a

[
f(T n

t,a[g])
]

= T n
t,a[f ◦ g].

Proof

T n
t,a

[
f(T n

t,a[g])
]

= T n
t,a

[
f ◦ (T n

t,a[g])
]

= T n
t,a

[
T n
t,(T n

t,a[g])(a)
[f ] ◦ T n

t,a

[
T n
t,a[g]

]]
= T n

t,a

[
T n
t,g(a)[f ] ◦ T n

t,a[g]
]

= T n
t,a [f ◦ g]

The second line is from applying lemma 1. The third line
can be seen noting that

(
T n
t,a[g]

)
(a) = g(0)(a) = g(a) and

T n
t,a ◦ T n

t,a = T n
t,a. �

We are now ready to prove theorem 1.

Proof From lemma 2,

T n−1
s,0

[
f
(
T n−1
s,0 [z(s)]

)]
= T n−1

s,0 [f (z(s))] .

This implies

z0 +

∫ t

0

T n−1
s,0

[
f
(
T n−1
s,0 [z(s)]

)]
ds

= z0 +

∫ t

0

T n−1
s,0 [f (v(s))] ds

= z0 +

∫ t

0

n−1∑
k=0

dk

dsk
[f (z(s))] (0)

(s)k

k!
ds

= z0 +

n−1∑
k=0

∫ t

0

dk

dsk
[f (z(s))] (0)

(s)k

k!
ds

= z0 +

n−1∑
k=0

dk

dsk
[f (z(s))] (0)

∫ t

0

(s)k

k!
ds

= z0 +
n−1∑
k=0

dk

dtk
[f (z(t))] (0)

tk+1

(k + 1)!

= z0 +

n−1∑
k=0

z (k+1)(0)
tk+1

(k + 1)!

=

n∑
k=0

z (k)(0)
tk

k!
ds = T n

t,0[z(t)].

From lemma 1,

T n−1
s,0 [f (z(s))] = T n−1

s,0

[
T n−1
s,z(0)[f ] ◦ T

n−1
s,0 [z(s)]

]
.

It follows then that

T n
t,0[z(t)] = z0 +

∫ t

0

T n−1
s,0

[
f
(
T n−1
s,0 [z(s)]

)]
ds

= z0 +

∫ t

0

T n−1
s,0

[
T n−1
s,z0

[f ] ◦ T n−1
s,0 [z(s)]

]
ds.

�
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IMPLEMENTATION AND RESULTS
Implementation

The Picard iteration based integrator was implemented
using COSY INFINITY. COSY has several unique data
types including differential algebra (DA) vectors which
were used to store the Taylor polynomials. Many opera-
tions on DA vectors are also efficiently coded into COSY
such as polynomial multiplication and composition. Built
in operations allow for computing the Taylor expansions of
various functions to specified order [3].

Algorithm 1 below describes how to compute z(t) at the
points t = T

N ,
2T
N , · · · , T . Here, T is the total time in-

terval under investigation with N time steps of length ∆t.
This algorithm uses the first composition in Theorem 1.

Algorithm 1 Picard Iteration Based Integrator
input z0, f(z, t) T, N, Tolerance
∆t← T

N
ẑ0 ← z0

for i = 1→ N do
Compute the “best” smaller time step to use ∆t

M ,
and an appropriate ORDER for the Taylor series
that keeps the local truncation error O(Tolerance).
t̂← ∆t

M
for j = 1→M do

φ0(t)← ẑ0

for k = 1→ ORDER do
φk(t)← ẑ0 +

∫ t

0
T k−1
s,0 [f (φk−1(s), s)] ds

end for
ẑ0 ← φORDER(t̂)

. The above is z ([i− 1 + j/M ]∆t) .
end for
Write ẑ0 . This is z(i∆t).

end for

In the loop from j = 1 to j = M the time scale for the
initial value problem is shifted left when j increases so that
the initial condition involves t0 = 0.{

z′ = f(t, z)
z(t0) = z0

→
{

z′ = f(t− t0, z)
z(0) = z0

This matches the conditions for Theorem 1 and reduces
the work of evaluating the definite integral by making the
second indefinite integral evaluation 0.

Results
One test of the integrator was to consider a system with a

proton following a circular orbit around another super mas-
sive particle with opposite charge. The momentum of the
proton was set at 2 m c

3×105 where m is the mass of a proton,
and the mass of the massive particle was set at 1040 m.
Balancing the centrifugal and Coulomb forces, the radius
of the orbit is approximately 0.512× 10−5m. For this test,
the time step is fixed at around 0.24169

c s. The theoretical tra-
jectory and integrator computation for the four thousandth

orbit are plotted in Fig. 1 as thick black semicircles and red
circled points, respectively.

Figure 1: Orbiting Particle Trajectories at Different Orders

Additional details concerning the integrator’s perfor-
mance have been studied [4].

CONCLUSION
By utilizing the Picard iteration based integrator de-

scribed, a wide class of functions can be integrated numer-
ically. The integrator has the advantages of being variable
order, being time adaptive, and having dense output. These
advantages have been utilized in a successful implementa-
tion to solve Coulomb interactions using COSY INFINITY.
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