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Abstract
The standard one-dimensional FEL equations are revised

to incorporate a new approach to the wiggle average, in a
context of continuous frequency. It has a firmer mathemat-
ical foundation, and leads to an interesting reformulation in
the time domain. The equations are interpreted as a nonlin-
ear Vlasov system for a continuous distribution function of
ponderomotive angle and energy spread. Numerical solu-
tions are illustrated.

VLASOV THEORY OF THE FEL
A linearized version of the Vlasov or Vlasov-

Klimontovich equation is accepted as the natural mathe-
matical framework for an analytic discussion of the basic
mechanism of the FEL, at distances up to and including
the exponential growth region. At greater distances along
the undulator a nonlinear saturation comes into play, and
to understand that regime one usually resorts to a simula-
tion based on a limited number of representative particles.
I explore an alternative approach, based on the full nonlin-
ear Vlasov equation. The general advantage of nonlinear
Vlasov over particle simulations is in reduction of model-
ing noise, but there may also be opportunities for analytic
studies of the nonlinear equation. This approach requires a
representation of the phase space distribution as a smooth
function. To account for granularity from the finite parti-
cle number in the startup of the SASE process, I take the
initial distribution to be noisy but smooth in the mathemat-
ical sense, namely a truncated formal Fourier series of a
random discrete particle distribution.

REVISED TREATMENT OF BASIC FEL
EQUATIONS

I first review a different treatment of basic FEL equations
in one degree of freedom. I work with equations for general
continuous frequency ν, and perform the wiggle average at
general ν, not just at integers. Moreover, the averaging is
now in a form that is justified by the mathematical theory
of averaging of differential equations. The new equations
suggest a more radical step, namely to reverse integration
orders so as to pass from the frequency domain to the time
domain (more exactly the domain of the ponderomotive an-
gle). The kernel in the new scheme, analogous to a wake
potential, has compact support and intriguing properties.

I consider planar electron motion in a planar undulator,
with z and x being longitudinal and transverse position co-
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ordinates. A general representation of the transverse elec-
tric field is [1]

Ex(z, t) =

∫ ∞
−∞

Êx(ν, z)eiνk1(z−ct)dν , (1)

assuming only that the field is smooth and decaying at in-
finity as a function of α = k1(z− ct). Here k1 = 2π/λ1 is
the wave number of the fundamental optical mode. A sim-
ilar representation holds for the current density Jx(z, t), in
the sense of Fourier transforms of generalized functions if
the source consists of point particles. A calculation invok-
ing the wave equation and the slow variation approximation
(dropping the second derivative), followed by the inverse
FT with respect to α, yields the result

∂Êx(ν, z)

∂z
= −Z0

2
Ĵx(ν, z) , (2)

with SI units, Z0 being the impedance of free space.
To derive Ĵx assume a volume density of electrons

ne(z, t) = − e

Σ⊥

N∑
j=1

δ(z − zj(t)) , (3)

where Σ⊥ is an average transverse area of the beam. Then
by applying the formula for velocity vx in the undulator
one finds

Jx(z, t) ≈ 1

γ0
K cos ζ ne(z, t) , ζ = kuz , γ = γ0(1+η) ,

(4)
where ku = 2π/λu is the undulator wave number and the
approximation is |η| � 1, used without comment hence-
forth. Now take the FT of Jx with respect to α, and for
each j change the integration variable from α to u where
t = tj(u) , zj(tj(u)) = u. Next introduce the ponderomo-
tive angle θ as a convenient phase space coordinate, namely

θ = α+χ(ζ) , χ(ζ) = ζ + ξ sin 2ζ , ξ =
1

2 + 4/K2
,

(5)
and define

θj(z) = αj(z) + χ(ζ) = k1(z − ctj(z)) + χ(ζ) . (6)

Then the FT of the current becomes

Ĵx(ν, z) = − ecNK

γ0Σ⊥λ1
w(ζ, ν) < e−iνθ(z) > , (7)

w(ζ, ν) = cos ζ eiνχ(ζ) , (8)

< e−iνθ(z) >=
1

N

N∑
j=1

e−iνθj(z) . (9)
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Now to make contact with Vlasov theory imagine a
smooth phase space distribution function f(θ, η, z). It and
its projection are normalized to 1:∫

dθ

∫
f(θ, η, z)dη = 1 , ρ(θ, z) =

∫
f(θ, η, z)dη .

(10)
The mean value of exp(−iνθ(z)) over the discrete distri-
bution will be identified with the mean value at z over the
continuous distribution, which is the Fourier transform of
the bunch form:

1

2π
< e−iνθ(z) >=

1

2π

∫
e−iνθρ(θ, z)dθ = ρ̂(ν, z) .

(11)
Returning to Eq.(2) and using (7) and (11) the field is

calculated merely by integrating with respect to z. Then
the equations of motion for η and θ can be derived in a
standard way, so that they take the form

dη

dz
= −κ

∫
w∗(ζ, ν)eiνθdν

∫ z

0

w(ζ ′, ν)ρ̂(ν, z′)dz′ ,

(12)
dθ

dz
= 2kuη , (13)

where

κ =
k1Z0(eK)2N

2mcγ3
0Σ⊥

. (14)

Eq.(12) is stated for the case of zero initial field in the inte-
gration of (2). Now the differential equations (12) and (13)
are to be integrated, using the Vlasov equation to update
the distribution function, hence updating ρ̂(ν, z′) through
(10) and an FT , at each integration step dz. The Vlasov
equation is

∂f

∂z
+
dθ

dz

∂f

∂θ
+
dη

dz

∂f

∂η
= 0 . (15)

The update is done by the method of local characteristics,
”local” referring to the procedure of holding the electric
force constant over an integration step in z. Thus

f(θ, η, z + dz) = f(θ − dθE(z), η − dηE(z), z) , (16)

the subscripts indicating an evaluation of coordinate incre-
ments with the field having its values at z.

It is usual to make use of the average of the ”wiggle
factor” w over one undulator period at integer ν, which
is given by a Bessel function expression [JJ ]q/2 at odd
ν = 2q+ 1, and is zero at even ν [2] The average is used to
replace w in ν-neighborhoods of integers which are, unfor-
tunately, not well defined. One can avoid the ambiguity and
proceed more naturally as follows, for arbitrary continuous
ν. Change the independent variable from z to ζ = kuz and
integrate in steps ∆ζ = 2πp, that is in steps of p undulator
periods with p an integer (in practice a small integer, say 1
to 5, proves to be satisfactory). During a step, ρ̂(ν, ζ ′) is
regarded as constant, so comes out of the integral in (12).

Note that local integrals of w are a phase factor times a
function gp(ν):∫ ζn+1

ζn

w(ζ, ν)dζ = einν∆ζ ∆ζ gp(ν) ,

gp(ν) =

∫ 2πp

0

cosu exp
[
iν(u− 2ξ sin 2u)

]
du . (17)

Then putting ζn = n∆ζ, the differential equation for
ζ ∈ [ζn, ζn+1] has the form

dη

dζ
= − κ

k2
u

∫
w∗(ζ, ν)eiνθdν

[
ρ̂(ν, ζn)

∫ ζ

ζn

w(ζ ′, ν)dζ ′

+∆ζ gp(ν)
n−1∑
m=0

ρ̂(ν, ζm)eimν∆ζ

]
(18)

So far the integrals of w have arisen naturally, without
invoking the concept of averaging. Finally, averaging is in-
troduced by replacing the r.h.s. of the differential equation
(18) by its average over the interval [ζn, ζn+1]. This local
averaging of the vector field of an ODE gives an approx-
imation with rigorous error bounds attributed to Eckhaus
[3]. With the definition

hp(ν) =
1

(∆ζ)2

∫ ∆ζ

0

w∗(v, ν)

[ ∫ v

0

w(u, ν)du

]
dv ,

(19)
the averaged equation on the interval [ζn, ζn+1] is

dη

dζ
= −∆ζ κ

k2
u

∫
eiνθdν

[
hp(ν)ρ̂(ν, ζn)

+e−inν∆ζ |gp(ν)|2
n−1∑
m=0

ρ̂(ν, ζm)eimν∆ζ

]
(20)

I take (13) and (20) as the basis for the numerical work of
the following. The functions |gp(ν)|2 and hp(ν) (divided
by their values at ν = 1) are plotted in Fig.1 for p = 3. The
peaks get narrower with increasing p.

Figure 1: Functions appearing in Eq.20 (normalized)

A REFORMULATION IN THE θ DOMAIN
Introducing the definition (11) of ρ̂ and reversing the or-

der of integrations one can recast (20) in θ-space as

dη

dζ
= − κ

k2
u

∫
dθ′
[
Tp(θ − θ′)ρ(θ′, ζn) +

n−1∑
m=0

Sp(θ − θ′ − ζn + ζm)ρ(θ′, ζm)

]
. (21)
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The kernels Sp and Tp are

Sp(θ) = p

∫
dν|gp(ν)|2eiνθ , Tp(θ) = p

∫
dνhp(ν)eiνθ .

(22)
These functions have compact support (vanish outside a fi-
nite interval) as can be seen from the Paley-Wiener theorem
[4]. Also Tp(θ) = Sp(θ) for θ > 0 and is zero for θ < 0.
The graph of S3 is shown in Fig.2.

Figure 2: The kernel Sp(θ) for p = 3.

NUMERICAL VLASOV SOLUTIONS
To reduce the FEL equations to the simplest form, one

assumes that the field and source are periodic in θ with pe-
riod 2π, giving the so-called steady state case with identi-
cal motion in all buckets. More generally one can take a
period 2πnb of nb buckets, and this can imitate the non-
periodic case for large nb. The following results are from
a periodic code with arbitrary nb, which represents f by
its values on a grid, and implements the update (16) by bi-
cubic interpolation to off-grid points. Parameters are for
the LCLS: undulator parameter K = 3.7, Pierce parameter
ρ = 6 · 10−4 (as defined in [1]). In terms of the normalized
length z̄ = 2ζρ the gain length as given by linear theory is
1/
√

3 ( [1], §4.5.1).
I first take a single bucket, using a 400 × 400 grid in

(θ, η)-space and p = 1 (integration step of one undula-
tor period). The initial distribution is Gaussian in η with
σ = ρ, times the truncated Fourier series of a random
uniform distribution in θ of 50000 particles. There is no
initial seed of the field. The calculation takes one minute
on a single processor (2.3 GHz). Integration for 30 gain
lengths gives the gain curve shown in Fig.3 (left). Fig.3
(right) shows the slope of the log of the power (blue) and
the value

√
3 that this has in the linear theory (red). The

linear prediction is good from about 5 to 12 gain lengths.

Figure 3: Left: power vs. number of gain lengths; Right:
slope of log of power (blue) and its value in linear theory
(red).

Figure 4: Phase space at 12 and 20 gain lengths.

Figure 5: Field spectrum and phase space density, SASE
model.

Fig.4 shows contour plots of phase space densities near the
end of the exponential region and well into the saturation
region.

To model the SASE mechanism one needs in princi-
ple a non-periodic θ dependence. To realize this numer-
ically I take instead a long period of nb = 1000 buck-
ets, and also increase the Peirce parameter to ρ = 0.01,
to decrease the computation time while still demonstrat-
ing the qualitative picture of SASE. I integrate to 8 gain
lengths, at which point the coherence length cστ is 4.8λ1

(by Eq.(4.155) in [1]), much less than the bunch length
of 1000λ1; this should mean that the non-periodic case
is well imitated. The frequency distribution in the field,
|Êx(ν)|2, appears near ν = 1 as in Fig.5 (left). The ex-
pected number of spikes in a very crude estimate ( [1], p.90)
is M ≈ nbλ1/4cστ = 52, not grossly different from what
is seen. The phase space density in 10 adjacent buckets is
shown in Fig.5 (right).
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